Possible dibaryon production at $\bar{\rm{P}}$anda with a Lagrangian approach

2021 ◽  
Author(s):  
Yubing Dong ◽  
Peng-Nian 沈彭年 Shen
Keyword(s):  
2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


1987 ◽  
Vol 26 (3) ◽  
pp. 499-512 ◽  
Author(s):  
C. Franciosi ◽  
V. Franciosi

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Neng-Chang Wei ◽  
Yu Zhang ◽  
Fei Huang ◽  
De-Min Li

2021 ◽  
Vol 16 (1) ◽  
pp. 75-153
Author(s):  
Severin Bunk ◽  
Konrad Waldorf

AbstractIn the Lagrangian approach to 2-dimensional sigma models, B-fields and D-branes contribute topological terms to the action of worldsheets of both open and closed strings. We show that these terms naturally fit into a 2-dimensional, smooth open-closed functorial field theory (FFT) in the sense of Atiyah, Segal, and Stolz–Teichner. We give a detailed construction of this smooth FFT, based on the definition of a suitable smooth bordism category. In this bordism category, all manifolds are equipped with a smooth map to a spacetime target manifold. Further, the object manifolds are allowed to have boundaries; these are the endpoints of open strings stretched between D-branes. The values of our FFT are obtained from the B-field and its D-branes via transgression. Our construction generalises work of Bunke–Turner–Willerton to include open strings. At the same time, it generalises work of Moore–Segal about open-closed TQFTs to include target spaces. We provide a number of further features of our FFT: we show that it depends functorially on the B-field and the D-branes, we show that it is thin homotopy invariant, and we show that it comes equipped with a positive reflection structure in the sense of Freed–Hopkins. Finally, we describe how our construction is related to the classification of open-closed TQFTs obtained by Lauda–Pfeiffer.


Sign in / Sign up

Export Citation Format

Share Document