spray system
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 87)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 169 ◽  
pp. 108940
Author(s):  
Hongping Sun ◽  
Jian Deng ◽  
Yuejian Luo ◽  
Ming Zhang ◽  
Youyou Xu ◽  
...  

Plant Disease ◽  
2022 ◽  
Author(s):  
Brent Warneke ◽  
Lloyd Nackley ◽  
Jay W. Pscheidt

Wine grapes are an important agricultural commodity in the Pacific Northwest where grape powdery mildew (GPM) is one of the main disease problems. The efficacy of different sulfur concentrations and different output volumes from an air blast sprayer retrofitted with the Intelligent Spray System (ISS) were evaluated for the management of GPM. The ISS consists of a LiDAR sensor, Doppler speed sensor, embedded computer, flow controller, and individual pulse-width-modulation solenoid valves at each nozzle. GPM cluster severity ranged from 55% to 75% across all trials in the study when using the ISS at its default spray rate of 62.5 ml m-3 and micronized sulfur at 6 g L-1, which was significantly higher than all other fungicide treatments, but lower than non-treated controls. Similarly, leaf incidence values were highest on non-treated vines, followed by micronized sulfur at 6 g L-1 applied at 62.5 ml m-3 , with all other fungicide treatments being significantly lower in all trials. Using the ISS at the 62.5 ml m-3 rate and a rotation of locally systemic fungicides resulted in the lowest observed GPM leaf incidence, and average cluster severity of 11% in both 2019 and 2020, the lowest cluster severity of all fungicide treatments tested. GPM control using the ISS and micronized sulfur was equivalent to a constant-rate air blast treatment at 6 g L-1 when the spray rate of the ISS was increased to 125ml m-3, or if the concentration of sulfur was increased to 24 g L-1. In those cases, the amount of sulfur applied to vines was at or above the minimum label rate from bloom until the end of the season, or the entire season, respectively. This study has shown that sufficient disease control cannot always be expected when mixing pesticides at the same rate as would be used for a constant-rate sprayer in a variable rate sprayer, especially when using contact fungicides like sulfur . With appropriate adjustments, the variable-rate ISS can be a useful tool to reduce pesticide quantities, water required for mixing, and as a result labor, as fewer trips to refill for a given spray event are required.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2048
Author(s):  
Kaiqiang Wu ◽  
Sin Wei Chee ◽  
Wen Sun ◽  
Adrian Wei-Yee Tan ◽  
Sung Chyn Tan ◽  
...  

Inconel 713C is a nickel-based superalloy usually considered as a material of poor weldability due to its susceptibility to hot cracking in the heat-affected zones. Cold spray, a solid-state deposition technology that does not involve melting, can be proposed as a methodology to deposit Inconel 713C for surface enhancement of other target components. In this study, Inconel 713C coating was deposited on Inconel 718 substrate with a high-pressure cold spray system. The coating was characterized in terms of microstructure, hardness, and wear properties. The cold-sprayed Inconel 713C coating has a low porosity level and refined grain structures. Microhardness of the Inconel 713C coating was much higher than the Inconel 718 substrate. The sliding wear tests showed that the wear resistance of the cold-sprayed Inconel 713C coating is three times higher than the Inconel 718 substrate, making the coating a suitable protective layer. The main wear mechanisms of the coating include oxidation, tribo-film formation, and adhesive wear.


Author(s):  
Guan Li ◽  
Biao Wang ◽  
Xiangli Bu ◽  
Di Wang ◽  
Jingkang He

This paper proposes a spray control system with variable particle size to address the inaccuracy of droplet size control in the existing spray dedusting system. A PID control algorithm with stable air and water pressure is adopted to ensure droplet size uniformity. An experimental device of the droplet control system is built in the laboratory to verify the algorithm’s effectiveness. Experiments were conducted using PLC as the core controller to verify the influence of different types of nozzles on the droplet size under the same air pressure and water pressure through experiments. The results show: (1) the systems droplet size range is 8–200 μm, which meets the dust removal conditions of respirable dust and is suitable for dust removal. (2) When measured under identical experimental conditions, the droplet size decreases as the nozzle angle increases. It was shown that the spray system combined with various sprinklers can achieve full droplet size coverage and improve the efficiency of dust-fall. It provides a solution for the existing dust removal system to flexibly change the droplet size according to the dust size.


2021 ◽  
Vol 13 (2-3) ◽  
pp. 124-145
Author(s):  
Saad A. El-Sayed

This paper investigated the critical ignition conditions of combustible gas containing liquid fuel droplets. The analysis is done based on the criteria of the thermal explosion theory. It includes analytical and numerical solutions of modeling equations of fuel droplets heating and evaporation by convection and radiation from the surrounding reactive hot gas. The exothermic reaction is usually modeled as a single-step reaction obeying an Arrhenius temperature dependence. The thermal conductivity of the fuel droplet is dependent on temperature. The analytical solution produced relations between the main critical characteristic parameters in all planes of the solution. The results obtained from investigating the effect of the characteristic parameters on the explosion behavior of gas and fuel droplets and the thermal radiation proved that both of them are significant. The study proved that the criticality definitions of the thermal explosion of a single-phase system can be used effectively and efficiently to determine the critical conditions of a multi-phase system. Finally, the application of the numerical solutions of the modeling equations was used to analyze the explosion characteristics of a diesel fuel spray system.


2021 ◽  
Vol 164 ◽  
pp. 108622
Author(s):  
Teemu Kärkelä ◽  
Anna-Elina Pasi ◽  
Fredrik Espegren ◽  
Tuomo Sevón ◽  
Unto Tapper ◽  
...  
Keyword(s):  

2021 ◽  
Vol 38 (11) ◽  
pp. 825-832
Author(s):  
Juhyun Kim ◽  
Sang Hyun Park ◽  
Dong-Guan Shin ◽  
Min-Gyu Kim ◽  
Seong Youb Chung ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3165
Author(s):  
Sara Trabucco ◽  
Simona Ortelli ◽  
Benedetta Del Secco ◽  
Ilaria Zanoni ◽  
Franco Belosi ◽  
...  

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field). We calculated the deposition efficiency (E), finding it to be enhanced by increasing the spray pressure from 1 to 1.5 bar, but to be lowered when the number of operating sprays was increased, demonstrating the multiple spray system to be less efficient than a single spray. Far-field AgNPs emission showed a particle concentration increase of less than 10% as compared to the background level. This finding suggests that under our experimental conditions, our spray-coating process is not a critical source of worker exposure.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 625-636
Author(s):  
VISWAMOORTHY RAJU ◽  
MARKUS ENGBLOM ◽  
EETU RANTALA ◽  
SONJA ENESTAM ◽  
JARMO MANSIKKASALO

In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combustion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.


Sign in / Sign up

Export Citation Format

Share Document