Electronic band structures and optical properties of atomically thin AuSe: first-principle calculations

2019 ◽  
Vol 40 (6) ◽  
pp. 062004 ◽  
Author(s):  
Pengxiang Bai ◽  
Shiying Guo ◽  
Shengli Zhang ◽  
Hengze Qu ◽  
Wenhan Zhou ◽  
...  
2009 ◽  
Vol 499 (1) ◽  
pp. 38/[360]-47/[369]
Author(s):  
Ki-Soo Kim ◽  
Yoon Soo Han ◽  
Cham Kim ◽  
Seonju Jeong ◽  
Giseop Kwak ◽  
...  

2017 ◽  
Vol 31 (21) ◽  
pp. 1750148 ◽  
Author(s):  
Imad Khan ◽  
Nasir Shehzad ◽  
Iftikhar Ahmad ◽  
Zahid Ali ◽  
S. Jalali-Asadabadi

In this paper, we communicate a new type of Auger-free luminescence (AFL) compounds, alkali tin fluorides ASnF3 (A = Na, K, Rb and Cs). The luminescence in these compounds originates due to the electron transition from the top valence band (VB) of tin-[Formula: see text] orbital to the outermost core levels of halogen, i.e., halogen-[Formula: see text] orbital ([Formula: see text]-[Formula: see text] transitions). The AFL of these compounds is expected to be of L-type. Furthermore, the electronic band structures and optical properties such as dielectric functions, refractive index and energy loss function are also investigated using ab initio calculations.


2020 ◽  
Vol 557 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Husnu Koc ◽  
Selami Palaz ◽  
Sevket Simsek ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay

In the present paper, we have investigated the electronic structure of some sillenites - Bi12MO20 (M = Ti, Ge, and Si) compounds based on the density functional theory. The mechanical and optical properties of Bi12MO20 have also been computed. The second-order elastic constants have been calculated, and the other related quantities have also been estimated in the present work. The band gap trend in Bi12MO20 can be understood from the nature of their electronic structures. The obtained electronic band structure for all Bi12MO20 compounds is semiconductor in nature. Similar to other oxides, there is a pronounced hybridization of electronic states between M-site cations and anions in Bi12MO20. Based on the obtained electronic structures, we further calculate the frequency-dependent dielectric function and other optical functions.


Sign in / Sign up

Export Citation Format

Share Document