Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield

2020 ◽  
Vol 17 (2) ◽  
pp. 026037 ◽  
Author(s):  
Elissa J Welle ◽  
Paras R Patel ◽  
Joshua E Woods ◽  
Artin Petrossians ◽  
Elena della Valle ◽  
...  
Author(s):  
Monica M. Arnold ◽  
Lauren M. Burgeno ◽  
Paul E. M. Phillips

Gaining insight into the mechanisms by which neural transmission governs behavior remains a central goal of behavioral neuroscience. Multiple applications exist for monitoring neurotransmission during behavior, including fast-scan cyclic voltammetry (FSCV). This technique is an electrochemical detection method that can be used to monitor subsecond changes in concentrations of electroactive molecules such as neurotransmitters. In this technique, a triangular waveform voltage is applied to a carbon fiber electrode implanted into a selected brain region. During each waveform application, specific molecules in the vicinity of the electrode will undergo electrolysis and produce a current, which can be detected by the electrode. In order to monitor subsecond changes in neurotransmitter release, waveform application is repeated every 100 ms, yielding a 10 Hz sampling rate. This chapter describes the fundamental principles behind FSCV and the basic instrumentation required, using as an example system the detection of in vivo phasic dopamine changes in freely-moving animals over the course of long-term experiments. We explain step-by-step, how to construct and surgically implant a carbon fiber electrode that can readily detect phasic neurotransmitter fluctuations and that remains sensitive over multiple recordings across months. Also included are the basic steps for recording FSCV during behavioral experiments and how to process voltammetric data in which signaling is time-locked to behavioral events of interest. Together, information in this chapter provides a foundation of FSCV theory and practice that can be applied to the assembly of an FSCV system and execution of in vivo experiments.


2021 ◽  
Vol 373 ◽  
pp. 137911
Author(s):  
S. Krishna Kumar ◽  
Sourav Ghosh ◽  
Madhushri Bhar ◽  
Ajay K. Kavala ◽  
Sivaraman Patchaiyappan ◽  
...  

2014 ◽  
Vol 182 (5-6) ◽  
pp. 1079-1087 ◽  
Author(s):  
Juliana Cancino ◽  
Sabine Borgmann ◽  
Sergio A. S. Machado ◽  
Valtencir Zucolotto ◽  
Wolfgang Schuhmann ◽  
...  

Author(s):  
Young-Hun Cho ◽  
Jae-Gyoung Seong ◽  
Jae-Hyun Noh ◽  
Da-Young Kim ◽  
Yong-Sik Chung ◽  
...  

In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amounts of ammonium persulfate (APS) as an oxidizing agent, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatments. In particular, the electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g-1 at 0.7 A g-1 and good rate capability of 34.8% at 4.9 A g-1. Moreover, the wire-type device displayed the superior energy density of 60.16 Wh kg-1 at a power density of 490 W kg-1 and excellent capacitance retention of 95% up to 3,000 charge/discharge cycles.


2004 ◽  
Vol 16 (7) ◽  
pp. 524-531 ◽  
Author(s):  
A. Mylonakis ◽  
A. Economou ◽  
P. R. Fielden ◽  
N. J. Goddard ◽  
A. Voulgaropoulos

2006 ◽  
Vol 162 (1) ◽  
pp. 228-238 ◽  
Author(s):  
Jeff T. Gostick ◽  
Michael W. Fowler ◽  
Mark D. Pritzker ◽  
Marios A. Ioannidis ◽  
Leya M. Behra

Sign in / Sign up

Export Citation Format

Share Document