electrode recording
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 3 (1) ◽  
pp. 101032
Author(s):  
Yan Tang ◽  
Diego Benusiglio ◽  
Arthur Lefevre ◽  
Stephanie Küppers ◽  
Olga Lapies ◽  
...  

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Mansi Prakash ◽  
Jeremy Murphy ◽  
Robyn St Laurent ◽  
Nina Friedman ◽  
Emmanuel L. Crespo ◽  
...  

AbstractUnderstanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.


2021 ◽  
Author(s):  
Mansi Prakash ◽  
Jeremy Murphy ◽  
Robyn St Laurent ◽  
Nina Friedman ◽  
Emmanual Crespo ◽  
...  

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control during behavior in vivo.


2021 ◽  
Vol 12 ◽  
pp. 379
Author(s):  
Nobutaka Mukae ◽  
Daisuke Kuga ◽  
Daisuke Murakami ◽  
Noritaka Komune ◽  
Yusuke Miyamoto ◽  
...  

Background: Temporal lobe epilepsy (TLE) associated with temporal lobe encephalocele is rare, and the precise epileptogenic mechanisms and surgical strategies for such cases are still unknown. Although the previous studies have reported good seizure outcomes following chronic subdural electrode recording through invasive craniotomy, only few studies have reported successful epilepsy surgery through endoscopic endonasal lesionectomy. Case Description: An 18-year-old man developed generalized convulsions at the age of 15 years. Despite treatment with optimal doses of antiepileptic drugs, episodes of speech and reading difficulties were observed 2–3 times per week. Long-term video electroencephalogram (EEG) revealed ictal activities starting from the left anterior temporal region. Magnetic resonance imaging revealed a temporal lobe encephalocele in the left lateral fossa of the sphenoidal sinus (sphenoidal encephalocele). Through the endoscopic endonasal approach, the tip of the encephalocele was exposed. A depth electrode was inserted into the encephalocele, which showed frequent spikes superimposed with high-frequency oscillations (HFOs) suggesting intrinsic epileptogenicity. The encephalocele was resected 8 mm from the tip. Twelve months postoperatively, the patient had no recurrence of seizures on tapering of the medication. Conclusion: TLE associated with sphenoidal encephalocele could be controlled with endoscopic endonasal lesionectomy, after confirming the high epileptogenicity with analysis of HFOs of intraoperative EEG recorded using an intralesional depth electrode.


2021 ◽  
pp. 155005942110343
Author(s):  
Shunsuke Takagi

Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ying-Chang Wu ◽  
Ying-Siou Liao ◽  
Wen-Hsiu Yeh ◽  
Sheng-Fu Liang ◽  
Fu-Zen Shaw

BackgroundDeep brain stimulation (DBS) is an effective treatment for movement disorders and neurological/psychiatric disorders. DBS has been approved for the control of Parkinson disease (PD) and epilepsy.ObjectivesA systematic review and possible future direction of DBS system studies is performed in the open loop and closed-loop configuration on PD and epilepsy.MethodsWe searched Google Scholar database for DBS system and development. DBS search results were categorized into clinical device and research system from the open-loop and closed-loop perspectives.ResultsWe performed literature review for DBS on PD and epilepsy in terms of system development by the open loop and closed-loop configuration. This study described development and trends for DBS in terms of electrode, recording, stimulation, and signal processing. The closed-loop DBS system raised a more attention in recent researches.ConclusionWe overviewed development and progress of DBS. Our results suggest that the closed-loop DBS is important for PD and epilepsy.


2021 ◽  
Author(s):  
Bas MJ Olthof ◽  
Dominika Lyzwa ◽  
Sarah E Gartside ◽  
Adrian Rees

The tinnitus-inducing agent salicylate reduces cochlear output but causes hyperactivity in higher auditory centres, including the inferior colliculus (the auditory midbrain). Using multi-electrode recording in anaesthetised guinea pigs (Cavia porcellus), we addressed the hypothesis that salicylate-induced hyperactivity in the inferior colliculus involves nitric oxide signalling secondary to increased ascending excitatory input. In the inferior colliculus, systemic salicylate (200 mg/kg i.p., 0 h) markedly increased spontaneous and sound-driven neuronal firing (3-6 h post drug) with both onset and sustained responses to pure tones being massively increased. Reverse microdialysis of increasing concentrations of salicylate directly into the inferior colliculus (100 μM-10 mM, from 0 h) failed to mimic systemic salicylate. In contrast, it caused a small, transient, increase in sound-driven firing (1 h), followed by a larger sustained decrease in both spontaneous and sound-driven firing (2-5 h). When salicylate was given systemically, reverse microdialysis of the neuronal nitric oxide synthase inhibitor L-methyl arginine into the inferior colliculus (500 mM, 2-6 h) completely blocked the salicylate-induced increase in spontaneous and sound-driven neuronal firing. Our data indicate that systemic salicylate induces neuronal hyperactivity in the auditory midbrain via a mechanism outside the inferior colliculus, presumably upstream in the auditory pathway; and that the mechanism is ultimately dependent on nitric oxide signalling within the inferior colliculus. Given that nitric oxide is known to mediate NMDA receptor signalling in the inferior colliculus, we propose that salicylate activates an ascending glutamatergic input to the inferior colliculus and that this is an important mechanism underlying salicylate-induced tinnitus.


2021 ◽  
pp. 1-1
Author(s):  
Chanoknan Buaban ◽  
Chinnatip Ratametha ◽  
Tanachai Limpisawas ◽  
Techapon Songthawornpong ◽  
Bhirawich Pholpoke ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Juan Cheng ◽  
Fang Wu ◽  
Mingrui Zhang ◽  
Ding Ding ◽  
Sumei Fan ◽  
...  

The ventrolateral preoptic nucleus (VLPO) in the anterior hypothalamus and the tuberomammillary nucleus (TMN) in the posterior hypothalamus are critical regions which involve the regulation of sleep-wakefulness flip-flop in the central nervous system. Most of the VLPO neurons are sleep-promoting neurons, which co-express γ-aminobutyric acid (GABA) and galanin, while TMN neurons express histamine (HA), a key wake-promoting neurotransmitter. Previous studies have shown that the two regions are innervated between each other, but how to regulate the sleep-wake cycle are not yet clear. Here, bicuculline (Bic), a GABAA-receptor antagonist, L-glutamate (L-Glu), an excitatory neurotransmitter, and triprolidine (Trip), a HA1 receptor (HRH1) inhibitor, were bilaterally microinjected into TMN or VLPO after surgically implanting the electroencephalogram (EEG) and electromyography (EMG) electrode recording system. Microinjecting L-Glu into VLPO during the night significantly increased the NREM sleep time, and this phenomenon was weakened after selectively blocking GABAA receptors with Bic microinjected into TMN. Those results reveal that VLPO neurons activated, which may inhibit TMN neurons inducing sleep via GABAA receptors. On the contrary, exciting TMN neurons by L-Glu during the day, the wakefulness time was significantly increased. These phenomena were reversed by blocking HRH1 with Trip microinjected into VLPO. Those results reveal that TMN neuron activating may manipulate VLPO neurons via HRH1, and induce wakefulness. In conclusion, VLPO GABAergic neurons and TMN histaminergic neurons may interact with each other in regulating the sleep-wake cycle.


Sign in / Sign up

Export Citation Format

Share Document