A three-dimensional micro-electrode array for in-vitro neuronal interfacing

2020 ◽  
Vol 17 (3) ◽  
pp. 036033
Author(s):  
Andrea Spanu ◽  
Nicolò Colistra ◽  
Pasqualina Farisello ◽  
Alexander Friz ◽  
Noel Arellano ◽  
...  
Author(s):  
S. Khoshfetrat Pakazad ◽  
A. M. Savov ◽  
A. van de Stolpe ◽  
S. Braam ◽  
B. van Meer ◽  
...  

Author(s):  
Lorenzo Muzzi ◽  
Donatella Di Lisa ◽  
Pietro Arnaldi ◽  
Davide Aprile ◽  
Laura Pastorino ◽  
...  

Abstract Objective: In this work we propose a method for producing engineered human derived three-dimensional neuronal assemblies coupled to Micro-Electrode Array (MEA) substrates for studying the electrophysiological activity of such networks. Approach: We used biocompatible chitosan microbeads as scaffold to build 3D networks and to ensure nutrients-medium exchange from the core of the structure to the external environment. We used excitatory neurons derived from human-induced Pluripotent Stem Cells (hiPSCs) co-cultured with astrocytes. By adapting the well-established NgN2 differentiation protocol, we obtained 3D engineered networks with good control over cell density, volume and cell composition. We coupled the 3D neuronal networks to 60-channel Micro Electrode Arrays (MEAs) to evaluate and monitor the functional activity of the neuronal population. In parallel, we generated two-dimensional neuronal networks to compare the results of the two models. Main results: 3D cultures were healthy and functional up to 42 Days In Vitro (DIVs). From the structural point of view, the hiPSC derived neurons were able to adhere to chitosan microbeads and to form a stable 3D assembly thanks to the connections among cells. From a functional point of view, neuronal networks showed spontaneous activity after a couple of weeks. We monitored the functional electrophysiological behavior up to 6 weeks and we compared the network dynamic with 2D models. Significance: We presented for the first time a method to generate 3D engineered cultures with human-derived neurons coupled to MEAs, overcoming some of the limitations related to 2D and 3D neuronal networks and thus increasing the therapeutic target potential of these models for biomedical applications.


Lab on a Chip ◽  
2009 ◽  
Vol 9 (14) ◽  
pp. 2036 ◽  
Author(s):  
Katherine Musick ◽  
David Khatami ◽  
Bruce C. Wheeler

Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document