A modular 256-channel Micro Electrode Array platform for in vitro and in vivo neural stimulation and recording: BioMEA™

Author(s):  
G Charvet ◽  
O Billoint ◽  
S Gharbi ◽  
M Heuschkel ◽  
C Georges ◽  
...  
2020 ◽  
Author(s):  
Yimin Huang ◽  
Ying Jiang ◽  
Xuyi Luo ◽  
Jiayingzi Wu ◽  
Haonan Zong ◽  
...  

AbstractNeuromodulation is an invaluable approach for study of neural circuits and clinical treatment of neurological diseases. Here, we report semiconducting polymer nanoparticles based photoacoustic nanotransducers (PANs) for neural stimulation. Our PANs strongly absorb light in the near-infrared second window and generate localized acoustic waves. PANs can also be surface-modified to selectively bind onto neurons. PAN-mediated activation of primary neurons in vitro is achieved with ten 3-nanosecond laser pulses at 1030 nm over a 3 millisecond duration. In vivo neural modulation of mouse brain activities and motor activities is demonstrated by PANs directly injected into brain cortex. With millisecond-scale temporal resolution, sub-millimeter spatial resolution and negligible heat deposition, PAN stimulation is a new non-genetic method for precise control of neuronal activities, opening potentials in non-invasive brain modulation.


2018 ◽  
Vol 28 (02) ◽  
pp. 1750015 ◽  
Author(s):  
Xu Zhang ◽  
Greg Foderaro ◽  
Craig Henriquez ◽  
Silvia Ferrari

Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.


Author(s):  
S. Khoshfetrat Pakazad ◽  
A. M. Savov ◽  
A. van de Stolpe ◽  
S. Braam ◽  
B. van Meer ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (21) ◽  
pp. 1237-1244 ◽  
Author(s):  
Jacob Hadley ◽  
Jack Hirschman ◽  
Bashir I. Morshed ◽  
Firouzeh Sabri

AbstractAerogels are light-weight porous materials that can tolerate the processing steps required for designing and creating an electric circuit such that the aerogel can be utilized as a substrate for device fabrication. Previous studies have shown the biostability and biocompatibility of polyurea crosslinked silica aerogels both in vivo and in vitro and have demonstrated the potential use of aerogels in biomedical applications. In vitro studies have shown that in the presence of an applied electric field neurites regeneration rate was greater on crosslinked silica aerogels than on tissue culture petridish used as a positive control. Currently, epineural suturing and nerve grafting are the gold standards for surgical reconstruction of injured nerves. However, because they rely on passive mechanisms for reapproximating the distal and proximal terminals they often lead to partial or no recovery leaving room for improvement. The present study investigates the feasibility of a wireless aerogel–based electrically-stimulating implant intended for nerve repair applications. Here the authors report on RF coupling between a secondary coil and a primary coil to wirelessly energize an interdigitated electrode array consisting of eleven interlocking fingers, created on a silica aerogel substrate. The coupling strength was tested both in air and in an animal model, as a function of distance and will be reported. This study focuses on in vivo evaluation and feasibility assessment of a novel active 3-D aerogel-based peripheral nerve repair device. The device utilizes induced EMF to establish a current (hence electrical stimulation) in predetermined pathways where nerve stumps will be confined to. Fundamental differences between in vitro and in vivo models necessitate the in vivo approach. The novel inductively-powered electrical stimulation aerogel-based device utilizes previously established 3-D confinement method for immobilization of nerve stumps, taking advantage of the mesoscopic surface roughness, unique to aerogels. The technique is tested on a mechanically strong, lightweight, porous, and biostable aerogel. Lithographic techniques, gold (Au) thin film metallization, and Faraday induction is used for circuit design, development, and activation.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 812
Author(s):  
Fnu Tala ◽  
Benjamin C. Johnson

Neural stimulation systems are used to modulate electrically excitable tissue to interrogate neural circuit function or provide therapeutic benefit. Conventional stimulation systems are expensive and limited in functionality to standard stimulation waveforms, and they are bad for high frequency stimulation. We present MEDUSA, a system that enables new research applications that can leverage multi-channel, arbitrary stimulation waveforms. MEDUSA is low cost and uses commercially available components for widespread adoption. MEDUSA is comprised of a PC interface, an FPGA for precise timing control, and eight bipolar current sources that can each address up to 16 electrodes. The current sources have a resolution of 15.3 nA and can provide ±5 mA with ±5 V compliance. We demonstrate charge-balancing techniques in vitro using a custom microelectrode. An in vivo strength-duration curve for earthworm nerve activation is also constructed using MEDUSA. MEDUSA is a multi-functional neuroscience research tool for electroplating microelectrodes, performing electrical impedance spectroscopy, and examining novel neural stimulation protocols.


Sign in / Sign up

Export Citation Format

Share Document