A Backward Monte Carlo method for fast-ion-loss simulations

2021 ◽  
Author(s):  
Filippo Zonta ◽  
Lucia Sanchis ◽  
Eero Hirvijoki

Abstract This paper presents a novel scheme to improve the statistics of simulated fast-ion loss signals and power loads to plasma-facing components in fusion devices. With the so-called Backward Monte Carlo method, the probabilities of marker particles reaching a chosen target surface can be approximately traced from the target back into the plasma. Utilizing the probabilities as {\it a priori} information for the well-established Forward Monte Carlo method, statistics in fast-ion simulations are significantly improved. For testing purposes, the scheme has been implemented to the ASCOT suite of codes and applied to a realistic ASDEX Upgrade configuration of beam-ion distributions.

Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. H19-H31 ◽  
Author(s):  
Knud Skou Cordua ◽  
Thomas Mejer Hansen ◽  
Klaus Mosegaard

We present a general Monte Carlo full-waveform inversion strategy that integrates a priori information described by geostatistical algorithms with Bayesian inverse problem theory. The extended Metropolis algorithm can be used to sample the a posteriori probability density of highly nonlinear inverse problems, such as full-waveform inversion. Sequential Gibbs sampling is a method that allows efficient sampling of a priori probability densities described by geostatistical algorithms based on either two-point (e.g., Gaussian) or multiple-point statistics. We outline the theoretical framework for a full-waveform inversion strategy that integrates the extended Metropolis algorithm with sequential Gibbs sampling such that arbitrary complex geostatistically defined a priori information can be included. At the same time we show how temporally and/or spatiallycorrelated data uncertainties can be taken into account during the inversion. The suggested inversion strategy is tested on synthetic tomographic crosshole ground-penetrating radar full-waveform data using multiple-point-based a priori information. This is, to our knowledge, the first example of obtaining a posteriori realizations of a full-waveform inverse problem. Benefits of the proposed methodology compared with deterministic inversion approaches include: (1) The a posteriori model variability reflects the states of information provided by the data uncertainties and a priori information, which provides a means of obtaining resolution analysis. (2) Based on a posteriori realizations, complicated statistical questions can be answered, such as the probability of connectivity across a layer. (3) Complex a priori information can be included through geostatistical algorithms. These benefits, however, require more computing resources than traditional methods do. Moreover, an adequate knowledge of data uncertainties and a priori information is required to obtain meaningful uncertainty estimates. The latter may be a key challenge when considering field experiments, which will not be addressed here.


Sign in / Sign up

Export Citation Format

Share Document