scholarly journals Formation of the radial electric field profile in the WEST tokamak

2021 ◽  
Author(s):  
Laure Vermare ◽  
Pascale Hennequin ◽  
Cyrille Honore ◽  
Mathieu Peret ◽  
Guilhem Dif-Pradalier ◽  
...  

Abstract Sheared flows are known to reduce turbulent transport by decreasing the correlation length and/or intensity of turbulent structures. The transport barrier that takes place at the edge during improved regimes such as H mode, corresponds to the establishment of a large shear of the radial electric field. In this context, the radial shape of the radial electric field or more exactly of the perpendicular $E\times B$ velocity appears as a key element in accessing improved confinement regimes. In this paper, we present the radial profile of the perpendicular velocity measured using Doppler back-scattering system at the edge of the plasma, dominated by the $E\times B$ velocity, during the first campaigns of the WEST tokamak. It is found that the radial velocity profile is clearly more sheared in LSN than in USN configuration for ohmic and low current plasmas ($B=3.7T$ and $q_{95}=4.7$), consistently with the expectation comparing respectively “favourable” versus “unfavourable” configuration. Interestingly, this tendency is sensitive to the plasma current and to the amount of additional heating power leading to plasma conditions in which the $E\times B$ velocity exhibits a deeper well in USN configuration. For example, while the velocity profile exhibits a clear and deep well just inside the separatrix concomitant with the formation of a density pedestal during L-H transitions observed in LSN configuration, deeper $E_r$ wells are observed in USN configuration during similar transitions with less pronounced density pedestal.

Author(s):  
Wei Li ◽  
Yuhong Xu ◽  
Jun Cheng ◽  
Hai Liu ◽  
Zhipeng Chen ◽  
...  

Abstract Effects of edge radial electric field Er and Er × B flow shear on edge turbulence and turbulent transport, in particular, on large-scale blobs and blobby transport have been investigated in the positive and negative biasing discharges in the J-TEXT tokamak. The results show that under certain conditions, the positive electrode biasing induces better plasma confinement than the negative biasing. Further studies reveal that in addition to flow shear effects on blob dynamics, the local radial electric field at the edge region plays a significant role in repulsion of the blobs and associated transport, leading to improvement of particle confinement when the outward motion of the blobs is blocked. The results are in accordance with theoretical predictions.


2013 ◽  
Vol 54 (1) ◽  
pp. 012003 ◽  
Author(s):  
E. Viezzer ◽  
T. Pütterich ◽  
C. Angioni ◽  
A. Bergmann ◽  
R. Dux ◽  
...  

2016 ◽  
Vol 56 (6-8) ◽  
pp. 522-527 ◽  
Author(s):  
K. Itoh ◽  
S.-I. Itoh ◽  
T. Kobayashi ◽  
K. Kamiya ◽  
T. Ido ◽  
...  

2006 ◽  
Vol 48 (9) ◽  
pp. 1425-1435 ◽  
Author(s):  
V Rozhansky ◽  
E Kaveeva ◽  
S Voskoboynikov ◽  
G Counsell ◽  
A Kirk ◽  
...  

2004 ◽  
Vol 3 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Ana Mancic ◽  
Aleksandra Maluckov ◽  
Yokoyama Masayoshi ◽  
Okamoto Masao

The effect of the presence of a magnetic island structure on the am bipolar radial electric field is studied in the context of the belt island model. It is shown that the sheared radial electric field region exists on the island position. Depending on the model parameters, the single (ion root) or multiple (one ion and two electron roots) solutions for the radial electric field are obtained at different radial positions. The radially non-local treatment is developed proposing the steady-state plasma conditions. The numerical calculations show that the diffusion of the radial electric field is significant only near the island boundaries. As a result the discontinuities in the am bipolar electric field profile are smoothed.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 50 ◽  
Author(s):  
Davide Galassi ◽  
Guido Ciraolo ◽  
Patrick Tamain ◽  
Hugo Bufferand ◽  
Philippe Ghendrih ◽  
...  

Turbulence in the edge plasma of a tokamak is a key actor in the determination of the confinement properties. The divertor configuration seems to be beneficial for confinement, suggesting an effect on turbulence of the particular magnetic geometry introduced by the X-point. Simulations with the 3D fluid turbulence code TOKAM3X are performed here to evaluate the impact of a diverted configuration on turbulence in the edge plasma, in an isothermal framework. The presence of the X-point is found, locally, to affect both the shape of turbulent structures and the amplitude of fluctuations, in qualitative agreement with recent experimental observations. In particular, a quiescent region is found in the divertor scrape-off layer (SOL), close to the separatrix. Globally, a mild transport barrier spontaneously forms in the closed flux surfaces region near the separatrix, differently from simulations in limiter configuration. The effect of turbulence-driven Reynolds stress on the formation of the barrier is found to be weak by dedicated simulations, while turbulence damping around the X-point seems to globally reduce turbulent transport on the whole flux surface. The magnetic shear is thus pointed out as a possible element that contributes to the formation of edge transport barriers.


2016 ◽  
Vol 56 (9) ◽  
pp. 092002 ◽  
Author(s):  
Y. Suzuki ◽  
K. Ida ◽  
K. Kamiya ◽  
M. Yoshinuma ◽  
H. Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document