scholarly journals Increasing the quality of pseudo-random number generator based on fuzzy logic

2018 ◽  
Vol 1096 ◽  
pp. 012193
Author(s):  
I V Anikin ◽  
K Alnajjar
2017 ◽  
Vol 28 (06) ◽  
pp. 1750078 ◽  
Author(s):  
Kamalika Bhattacharjee ◽  
Dipanjyoti Paul ◽  
Sukanta Das

This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.


2020 ◽  
Vol 31 (03) ◽  
pp. 2050037
Author(s):  
Sumit Adak ◽  
Kamalika Bhattacharjee ◽  
Sukanta Das

This work explores the randomness quality of maximal length cellular automata (CAs) in GF([Formula: see text]), where [Formula: see text]. A greedy strategy is chosen to select the candidate CAs which satisfy unpredictability criterion essential for a good pseudo-random number generator (PRNG). Then, performance of these CAs as PRNGs is empirically analyzed by using Diehard battery of tests. It is observed that, up to GF(11), increase in [Formula: see text] improves randomness quality of the CAs, but after that, it saturates. Finally, we propose an implementable design of a good PRNG based on a 13-cell maximal length cellular automaton over GF(11) which can compete with the existing well-known PRNGs.


Author(s):  
M. A. BAEVA ◽  

In this article, the author considers various types of pseudo-random sequence generators, their distinctive properties. The article provides formulas for calculating the next member of the sequence, knowing the previous ones. The main functions and properties are considered that make it possible to evaluate the quality of the generation of pseudo-random sequences, and based on the analysis performed, the most successful variant of the pseudo-random number generator is selected taking into account the requirements.


2013 ◽  
Vol 16 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Sattar B. Sadkhan ◽  
◽  
Sawsan K. Thamer ◽  
Najwan A. Hassan ◽  
◽  
...  

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Junxiu Liu ◽  
Zhewei Liang ◽  
Yuling Luo ◽  
Lvchen Cao ◽  
Shunsheng Zhang ◽  
...  

Recent research showed that the chaotic maps are considered as alternative methods for generating pseudo-random numbers, and various approaches have been proposed for the corresponding hardware implementations. In this work, an efficient hardware pseudo-random number generator (PRNG) is proposed, where the one-dimensional logistic map is optimised by using the perturbation operation which effectively reduces the degradation of digital chaos. By employing stochastic computing, a hardware PRNG is designed with relatively low hardware utilisation. The proposed hardware PRNG is implemented by using a Field Programmable Gate Array device. Results show that the chaotic map achieves good security performance by using the perturbation operations and the generated pseudo-random numbers pass the TestU01 test and the NIST SP 800-22 test. Most importantly, it also saves 89% of hardware resources compared to conventional approaches.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Sehoon Lee ◽  
Myungseo Park ◽  
Jongsung Kim

With the rapid increase in computer storage capabilities, user data has become increasingly important. Although user data can be maintained by various protection techniques, its safety has been threatened by the advent of ransomware, defined as malware that encrypts user data, such as documents, photographs and videos, and demands money to victims in exchange for data recovery. Ransomware-infected files can be recovered only by obtaining the encryption key used to encrypt the files. However, the encryption key is derived using a Pseudo Random Number Generator (PRNG) and is recoverable only by the attacker. For this reason, the encryption keys of malware are known to be difficult to obtain. In this paper, we analyzed Magniber v2, which has exerted a large impact in the Asian region. We revealed the operation process of Magniber v2 including PRNG and file encryption algorithms. In our analysis, we found a vulnerability in the PRNG of Magniber v2 developed by the attacker. We exploited this vulnerability to successfully recover the encryption keys, which was by verified the result in padding verification and statistical randomness tests. To our knowledge, we report the first recovery result of Magniber v2-infected files.


Sign in / Sign up

Export Citation Format

Share Document