scholarly journals A Model for Solar Wind Structure and Dynamics Based on Alfvén Wave Turbulence

2018 ◽  
Vol 1100 ◽  
pp. 012002
Author(s):  
M Asgari-Targhi ◽  
A A van Ballegooijen ◽  
M Shoda
2021 ◽  
Author(s):  
Huw Morgan

<p>To date, the inner boundary conditions for solar wind models are either directly or indirectly based on magnetic field extrapolation models of the photosphere. Furthermore, between the photosphere and Earth, there are no other direct empirical constraints on models. New breakthroughs in coronal rotation tomography, applied to coronagraph observations, allow maps of the coronal electron density to be made in the heliocentric height range 4-12 solar radii (Rs). We show that these maps (i) give a new empirical boundary condition for solar wind structure at a height where the coronal magnetic field has become radial, thus avoiding the need to model the complex inner coronal magnetic field, and (ii) give accurate rotation rates for the corona, of crucial importance to the accuracy of solar wind models and forecasts.</p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


Author(s):  
M.V. Alania ◽  
R.G. Aslamazashvili ◽  
T.B. Bochorishvili ◽  
L.I. Dorman ◽  
R.T. Guschina ◽  
...  

1997 ◽  
Author(s):  
M. Kojima ◽  
K. Asai ◽  
P. L. Hick ◽  
B. V. Jackson ◽  
M. Tokumaru ◽  
...  

Nature ◽  
1993 ◽  
Vol 366 (6455) ◽  
pp. 543-545 ◽  
Author(s):  
Richard Woo ◽  
Paul Gazis

2009 ◽  
Vol 36 (9) ◽  
Author(s):  
M. Tokumaru ◽  
M. Kojima ◽  
K. Fujiki ◽  
K. Hayashi

Sign in / Sign up

Export Citation Format

Share Document