scholarly journals Study of Sound Direction Evacuation

2018 ◽  
Vol 1107 ◽  
pp. 072002
Author(s):  
Wenhui Dong ◽  
Chunyu Yu ◽  
Mei Zhibin
Keyword(s):  
Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3469
Author(s):  
Chien-Chang Huang ◽  
Chien-Hao Liu

In this research, we proposed a miniaturized two-element sensor array inspired by Ormia Ochracea for sound direction finding applications. In contrast to the convectional approach of using mechanical coupling structures for enlarging the intensity differences, we exploited an electrical coupling network circuit composed of lumped elements to enhance the phase differences and extract the optimized output power for good signal-to-noise ratio. The separation distance between two sensors could be reduced from 0.5 wavelength to 0.1 wavelength 3.43 mm at the operation frequency of 10 kHz) for determining the angle of arrivals. The main advantages of the proposed device include low power losses, flexible designs, and wide operation bandwidths. A prototype was designed, fabricated, and experiments examined within a sound anechoic chamber. It was demonstrated that the proposed device had a phase enhancement of 110 ∘ at the incident angle of 90 ∘ and the normalized power level of −2.16 dB at both output ports. The received power levels of our device were 3 dB higher than those of the transformer-type direction-finding system. In addition, our proposed device could operate in the frequency range from 8 kHz to 12 kHz with a tunable capacitor. The research results are expected to be beneficial for the compact sonar or radar systems.


2019 ◽  
Vol 237 (12) ◽  
pp. 3221-3231 ◽  
Author(s):  
Takumi Mieda ◽  
Masahiro Kokubu ◽  
Mayumi Saito

2012 ◽  
Vol 107 (2) ◽  
pp. 658-665 ◽  
Author(s):  
Michaela Meyer ◽  
Arthur N. Popper ◽  
Richard R. Fay

The lake sturgeon, Acipenser fulvescens, belongs to one of the few extant nonteleost ray-finned fishes and diverged from the main vertebrate lineage about 250 million years ago. The aim of this study was to use this species to explore the peripheral neural coding strategies for sound direction and compare these results to modern bony fishes (teleosts). Extracellular recordings were made from afferent neurons innervating the saccule and lagena of the inner ear while the fish was stimulated using a shaker system. Afferents were highly directional and strongly phase locked to the stimulus. Directional response profiles resembled cosine functions, and directional preferences occurred at a wide range of stimulus intensities (spanning at least 60 dB re 1 nm displacement). Seventy-six percent of afferents were directionally selective for stimuli in the vertical plane near 90° (up down) and did not respond to horizontal stimulation. Sixty-two percent of afferents responsive to horizontal stimulation had their best axis in azimuths near 0° (front back). These findings suggest that in the lake sturgeon, in contrast to teleosts, the saccule and lagena may convey more limited information about the direction of a sound source, raising the possibility that this species uses a different mechanism for localizing sound. For azimuth, a mechanism could involve the utricle or perhaps the computation of arrival time differences. For elevation, behavioral strategies such as directing the head to maximize input to the area of best sensitivity may be used. Alternatively, the lake sturgeon may have a more limited ability for sound source localization compared with teleosts.


Sign in / Sign up

Export Citation Format

Share Document