scholarly journals Research of the efficiency of combining nuclear power plants with a multifunctional autonomous hydrogen energy complex

2018 ◽  
Vol 1111 ◽  
pp. 012024
Author(s):  
V E Yurin ◽  
A N Egorov
Author(s):  
R. Z. Aminov ◽  
A. N. Egorov

The paper analyzes the problems of combustion hydrogen in an oxygen medium for produce high-temperature steam that can be used to produce electricity at various power plants. For example, at the nuclear power plants, the use of a H2-O2 steam generator as part of a hydrogen energy complex makes it possible to increase its power and efficiency in the operational mode due to steam-hydrogen overheating of the main working fluid of a steam-turbine plant. In addition, the use of the hydrogen energy complex makes it possible to adapt the nuclear power plants to variable electric load schedules in conditions of increasing the share of nuclear power plants and to develop environmentally friendly technologies for the production of electricity. The paper considers a new solution of the problem of effective and safe use of hydrogen energy at NPPs with a hydrogen energy complex.Technical solutions for the combustion of hydrogen in the oxygen medium using direct injection of cooling water or steam in the combustion products have a significant drawback – the effect of “quenching” when injecting water or water vapor which leads to a decrease in the efficiency of recombination during cooling of combustion products that is expressed in an increase fraction of non-condensable gases. In this case, the supply of such a mixture to the steam cycle is unsafe, because this can lead to a dangerous increase in the concentration of unburned hydrogen in the flowing part of the steam turbine plant. In order to solve this problem, the authors have proposed a closed hydrogen cycle and a hydrogen vapor overheating system based on it, and carried out a study of a closed hydrogen combustion system which completely eliminates hydrogen from entering the working fluid of the steam cycle and ensures its complete oxidation due to some excess of circulating oxygen.The paper considers two types of hydrogen-oxygen combustion chambers for the system of safe generating of superheated steam using hydrogen in nuclear power plant cycle by using a closed system for burning hydrogen in an oxygen medium. As a result of mathematical modeling of combustion processes and heat and mass transfer, we have determined the required parameters of a hydrogen-oxygen steam generator taking into account the temperature regime of its operation, and a power range of hydrogen-oxygen steam generators with the proposed combustion chamber design.


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Author(s):  
R. Z. Aminov ◽  
A. N. Bayramov ◽  
M. V. Garievskii

The paper gives the analysis of the problem of the primary current frequency regulation in the power system, as well as the basic requirements for NPP power units under the conditions of involvement in the primary regulation. According to these requirements, the operation of NPPs is associated with unloading and a corresponding decrease in efficiency. In this regard, the combination of nuclear power plants with a hydrogen complex is shown to eliminate the inefficient discharge mode which allows the steam turbine equipment and equipment of the reactor facility to operate in the basic mode at the nominal power level. In addition, conditions are created for the generation and accumulation of hydrogen and oxygen during the day, as well as additionally during the nighttime failure of the electrical load which allows them to be used to generate peak power.  The purpose of the article is to assess the systemic economic effect as a result of the participation of nuclear power plants in combination with the hydrogen complex in the primary control of the current frequency in the power sys-tem, taking into account the resource costs of the main equipment. In this regard, the paper gives the justification of cyclic loading of the main equipment of the hydrogen complex: metal storage tanks of hydrogen and oxygen, compressor units, hydrogen-oxygen combustion chamber of vapor-hydrogen overheating of the working fluid in the steam turbine cycle of a nuclear power plant. The methodological foundations for evaluating the working life of equipment under cyclic loading with the participation in the primary frequency control by the criterion of the growth rate of a fatigue crack are described. For the equipment of the hydrogen complex, the highest intensity of loading is shown to occur in the hydrogen-oxygen combustion chamber due to high thermal stresses.  The system economic effect is estimated and the effect of wear of the main equipment under cyclic loading is shown. Under the conditions of combining NPP power units with a hydrogen complex, the efficiency of primary reg-ulation is shown to depend significantly on: the cost of equipment subjected to cyclic loading; frequency and intensity of cyclic loading; the ratio of the tariff for peak electricity, and the cost of electricity of nuclear power plants.  Based on the developed methodology for assessing the effectiveness of the participation of nuclear power plants with a hydrogen complex in the primary frequency control, taking into account the damage to the equipment, the use of the hydrogen complex is shown to provide a tangible economic effect compared with the option of unloading nuclear power plants with direct participation in frequency control.


Sign in / Sign up

Export Citation Format

Share Document