scholarly journals Spatial variability of soil magnetic susceptibility under different scales: a case study of Xiangtan

2019 ◽  
Vol 1176 ◽  
pp. 042025
Author(s):  
Yong Zhang
2013 ◽  
Vol 33 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Hélio L. Santos ◽  
José Marques Júnior ◽  
Sammy S. R. Matias ◽  
Diego S. Siqueira ◽  
Marcílio V. Martins Filho

The erosion is the degradation of soil with effects on crop productivity and pollution of the environment. To understand the spatial variability of this phenomenon, geostatistical techniques and concepts of soil-landscape can be used to identify landscape compartments with different potential of erosion. The aim of this study was to understand the factors of erosion in landscape compartments and the relations with the magnetic susceptibility (MS) of the soils in a slope in Gilbués, state of Piauí (PI), Brazil. Sampling meshes were set in compartments I and II with 121 points and in compartment III with 99 points spaced every 10 meters. There was significant difference to erodibility (K) and risk of erosion (RE); the spatial variability of MS was lower than the factors of soil erosion. The soil losses (A), the natural erosion potential (NEP), the RE and the MS had spatial relation with the topographic factor, indicating dependence of the erosion with the relief. We concluded that losses of soil, natural erosion potential and risk of erosion have spatial relation with the topographic factor, showing the dependence of the erosion factors with the relief. The soil magnetic susceptibility can be used as an auxiliary variable in the indirect quantification of the erodibility factor and the risk of soil erosion.


2021 ◽  
Vol 108 ◽  
pp. 103191
Author(s):  
Julierme Zimmer Barbosa ◽  
Giovana Poggere ◽  
Sérgio Henrique Godinho Silva ◽  
Marcelo Mancini ◽  
Antonio Carlos Vargas Motta ◽  
...  

2016 ◽  
Vol 51 (9) ◽  
pp. 1349-1358 ◽  
Author(s):  
Diego Silva Siqueira ◽  
José Marques Júnior ◽  
Daniel De Bortoli Teixeira ◽  
Sammy Sidney Rocha Matias ◽  
Livia Arantes Camargo ◽  
...  

Abstract The objective of this work was to evaluate the use of magnetic susceptibility for characterizing the spatial variability of soil attributes and identifying areas with different potentials for sugarcane (Saccharum spp.) production. Samples were collected at 110 points (1 per 7 ha) in the layers of 0.00-0.20 and 0.20-0.40 m, to determine the magnetic susceptibility and physical and chemical attributes of the soil. Fiber content, sucrose polarization (POL), and sugarcane yield were determined in 33 points. The spatial variability model for magnetic susceptibility was 63 and 22% more accurate in delimiting soil potential for sugarcane production than soil physical and chemical attributes at the 0.0-0.2 and 0.2-0.4-m layers, respectively. The spatial variability map for magnetic susceptibility was strongly correlated with clay (0.83 and 0.89, respectively, for the layers) and sand contents (-0.84 and -0.88); moderately correlated with organic matter (-0.25 and -0.35), sum of bases (-0.46 and 0.37), cation exchange capacity (0.22 and 0.47), pH (-0.52 and 0.13), and POL (0.43 and 0.53); and weakly correlated with sugarcane yield (0.26 and 0.23). Magnetic susceptibility can be used to characterize the spatial variability of soil attributes and to identify areas with different potentials for sugarcane production.


Sign in / Sign up

Export Citation Format

Share Document