scholarly journals Research and Improvement of Image Encryption Algorithms Based on Chaos

2019 ◽  
Vol 1237 ◽  
pp. 022075
Author(s):  
Ruoyu Wang ◽  
Sanxing Cao
Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 44 ◽  
Author(s):  
Sameh Askar ◽  
Abdel Karawia ◽  
Abdulrahman Al-Khedhairi ◽  
Fatemah Al-Ammar

In the literature, there are many image encryption algorithms that have been constructed based on different chaotic maps. However, those algorithms do well in the cryptographic process, but still, some developments need to be made in order to enhance the security level supported by them. This paper introduces a new cryptographic algorithm that depends on a logistic and two-dimensional chaotic economic map. The robustness of the introduced algorithm is shown by implementing it on several types of images. The implementation of the algorithm and its security are partially analyzed using some statistical analyses such as sensitivity to the key space, pixels correlation, the entropy process, and contrast analysis. The results given in this paper and the comparisons performed have led us to decide that the introduced algorithm is characterized by a large space of key security, sensitivity to the secret key, few coefficients of correlation, a high contrast, and accepted information of entropy. In addition, the results obtained in experiments show that our proposed algorithm resists statistical, differential, brute-force, and noise attacks.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


2010 ◽  
Vol 171-172 ◽  
pp. 299-304 ◽  
Author(s):  
Zhuo Hui Xian ◽  
Shi Liang Sun

Due to some features of images, traditional encryption algorithms are not suitable for practical image encryption. Considering this problem, a novel feistel network image encryption algorithm is proposed in this paper. Taking advantage of the desirable properties of mixing and sensitivity to initial parameters of chaotic maps, a sub key generator with couple chaotic maps is presented in this scheme. Meanwhile, the encryption algorithm includes a new mixing algorithm which is designed with thirty s-boxes of AES. To enhance the security of the new scheme, the encryption processes were combined in feistel network. The results of analysis and simulation experiments indicate that the scheme is secure and performed well in preventing attacks, such as brute force attack, entropy attack and statistics attack.


2010 ◽  
Vol 20 (05) ◽  
pp. 1405-1413 ◽  
Author(s):  
ERCAN SOLAK ◽  
CAHIT ÇOKAL ◽  
OLCAY TANER YILDIZ ◽  
TÜRKER BIYIKOĞLU

We cryptanalyze Fridrich's chaotic image encryption algorithm. We show that the algebraic weaknesses of the algorithm make it vulnerable against chosen-ciphertext attacks. We propose an attack that reveals the secret permutation that is used to shuffle the pixels of a round input. We demonstrate the effectiveness of our attack with examples and simulation results. We also show that our proposed attack can be generalized to other well-known chaotic image encryption algorithms.


2016 ◽  
Vol 85 ◽  
pp. 72-83 ◽  
Author(s):  
Salwa K. Abd-El-Hafiz ◽  
Sherif H. AbdElHaleem ◽  
Ahmed G. Radwan

Sign in / Sign up

Export Citation Format

Share Document