scholarly journals Detection and recognition of objects on aerial photographs using convolutional neural networks

2019 ◽  
Vol 1326 ◽  
pp. 012038 ◽  
Author(s):  
V A Pavlov ◽  
M A Galeeva
2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2020 ◽  
Vol 12 (3) ◽  
pp. 408
Author(s):  
Małgorzata Krówczyńska ◽  
Edwin Raczko ◽  
Natalia Staniszewska ◽  
Ewa Wilk

Due to the pathogenic nature of asbestos, a statutory ban on asbestos-containing products has been in place in Poland since 1997. In order to protect human health and the environment, it is crucial to estimate the quantity of asbestos–cement products in use. It has been evaluated that about 90% of them are roof coverings. Different methods are used to estimate the amount of asbestos–cement products, such as the use of indicators, field inventory, remote sensing data, and multi- and hyperspectral images; the latter are used for relatively small areas. Other methods are sought for the reliable estimation of the quantity of asbestos-containing products, as well as their spatial distribution. The objective of this paper is to present the use of convolutional neural networks for the identification of asbestos–cement roofing on aerial photographs in natural color (RGB) and color infrared (CIR) compositions. The study was conducted for the Chęciny commune. Aerial photographs, each with the spatial resolution of 25 cm in RGB and CIR compositions, were used, and field studies were conducted to verify data and to develop a database for Convolutional Neural Networks (CNNs) training. Network training was carried out using the TensorFlow and R-Keras libraries in the R programming environment. The classification was carried out using a convolutional neural network consisting of two convolutional blocks, a spatial dropout layer, and two blocks of fully connected perceptrons. Asbestos–cement roofing products were classified with the producer’s accuracy of 89% and overall accuracy of 87% and 89%, depending on the image composition used. Attempts have been made at the identification of asbestos–cement roofing. They focus primarily on the use of hyperspectral data and multispectral imagery. The following classification algorithms were usually employed: Spectral Angle Mapper, Support Vector Machine, object classification, Spectral Feature Fitting, and decision trees. Previous studies undertaken by other researchers showed that low spectral resolution only allowed for a rough classification of roofing materials. The use of one coherent method would allow data comparison between regions. Determining the amount of asbestos–cement products in use is important for assessing environmental exposure to asbestos fibres, determining patterns of disease, and ultimately modelling potential solutions to counteract threats.


Sign in / Sign up

Export Citation Format

Share Document