feature fitting
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
pp. 183
Author(s):  
Arie Dwika Rahmandhana ◽  
Muhammad Kamal ◽  
Pramaditya Wicaksono

Mangrove mapping at the species level enables the creation of a detailed inventory of mangrove forest biodiversity and supports coastal ecosystem management. The Karimunjawa National Park in Central Java Province is one of Indonesia’s mangrove habitats with high biodiversity, namely, 44 species representing 25 true mangroves and 19 mangrove associates. This study aims to (1) classify and group mangrove species by their spectral reflectance characteristics, (2) map mangrove species by applying their spectral reflectance to WorldView-2 satellite imagery with the spectral angle mapper (SAM), spectral information divergence (SID), and spectral feature fitting (SFF) algorithms, and (3) assess the accuracy of the produced mangrove species mapping of the Karimunjawa and Kemujan Islands. The collected field data included (1) mangrove species identification, (2) coordinate locations of targeted mangrove species, and (3) the spectral reflectance of mangrove species measured with a field spectrometer. Dendrogram analysis was conducted with the Ward linkage method to classify mangrove species based on the distance between the closest clusters of spectral reflectance patterns. The dendrogram showed that the 24 mangrove species found in the field could be grouped into four levels. They consisted of two, four, and five species groups for Levels 1 to 3, respectively, and individual species for Level 4. The mapping results indicated that the SID algorithm had the highest overall accuracy (OA) at 49.72%, 22.60%, and 15.20% for Levels 1 to 3, respectively, while SFF produced the most accurate results for individual species mapping (Level 4) with an OA of 5.08%. The results suggest that the greater the number of classes to be mapped, the lower the mapping accuracy. The results can be used to model the spatial distribution of mangrove species or the composition of mangrove forests and update databases related to coastal management.


2021 ◽  
Vol 13 (11) ◽  
pp. 2101
Author(s):  
Arindam Guha ◽  
Uday Kumar Ghosh ◽  
Joyasree Sinha ◽  
Amin Beiranvand Pour ◽  
Ratnakar Bhaisal ◽  
...  

In this study, we have processed the spectral bands of airborne hyperspectral data of Advanced Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data for delineating the surface signatures associated with the base metal mineralization in the Pur-Banera area in the Bhilwara district, Rajasthan, India.The primaryhost rocks of the Cu, Pb, Zn mineralization in the area are Banded Magnetite Quartzite (BMQ), unclassified calcareous silicates, and quartzite. We used ratio images derived from the scale and root mean squares (RMS) error imagesusing the multi-range spectral feature fitting (MRSFF) methodto delineate host rocks from the AVIRIS-NG image. The False Color Composites (FCCs) of different relative band depth images, derived from AVIRIS-NG spectral bands, were also used for delineating few minerals. These minerals areeither associated with the surface alteration resulting from the ore-bearing fluid migration orassociated with the redox-controlled supergene enrichments of the ore deposit.The results show that the AVIRIS-NG image products derived in this study can delineate surface signatures of mineralization in 1:10000 to 1:15000 scales to narrow down the targets for detailed exploration.This study alsoidentified the possible structural control over the knownsurface distribution of alteration and lithocap minerals of base metal mineralizationusing the ground-based residual magnetic anomaly map. This observationstrengthens the importance of the identified surface proxiesas an indicator of mineralization. X-ray fluorescence analysis of samples collectedfromselected locations within the study area confirms the Cu-Pb-Zn enrichment. The sulfide minerals were also identified in the microphotographs of polished sections of rock samples collected from the places where surface proxies of mineralization were observed in the field. This study justified the investigation to utilize surface signatures of mineralization identified using AVIRIS-NG dataand validated using field observations, geophysical, geochemical, and petrographical data.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Xiaoyan Chen ◽  
Jiang Chen ◽  
Jun Pan

AbstractNickel sulfide deposits occur in ultramafic rocks in the Daxinganling area, China; however, the prospectivity of these deposits has received little attention. This study transformed rasterized regional 1:200,000 geochemical data into spectral-like data and then used hyperspectral tools of the spectral angle mapper (SAM) to classify possible ultramafic lithologies and the multirange spectral feature fitting (MRSFF) method to classify prospective areas that are similar to a typical Gaxian Ni deposit. The prospective area map generated by the MRSFF implies the possible occurrence of ultramafic rocks classified by the SAM method. These results confirm the suitability of this innovative approach for prospectivity mapping of Ni sulfide deposits.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ibrahim Shaik ◽  
S. K. Begum ◽  
P. V. Nagamani ◽  
Narayan Kayet

AbstractThe study demonstrates a methodology for mapping various hematite ore classes based on their reflectance and absorption spectra, using Hyperion satellite imagery. Substantial validation is carried out, using the spectral feature fitting technique, with the field spectra measured over the Bailadila hill range in Chhattisgarh State in India. The results of the study showed a good correlation between the concentration of iron oxide with the depth of the near-infrared absorption feature (R2 = 0.843) and the width of the near-infrared absorption feature (R2 = 0.812) through different empirical models, with a root-mean-square error (RMSE) between < 0.317 and < 0.409. The overall accuracy of the study is 88.2% with a Kappa coefficient value of 0.81. Geochemical analysis and X-ray fluorescence (XRF) of field ore samples are performed to ensure different classes of hematite ore minerals. Results showed a high content of Fe > 60 wt% in most of the hematite ore samples, except banded hematite quartzite (BHQ) (< 47 wt%).


Author(s):  
Haicheng Qu ◽  
Jianzhong Zhou ◽  
Jitao Qin ◽  
Xiaorong Tian

In traditional network anomaly detection algorithms, the anomaly threshold needs to be defined manually. Keeping this as background, this study proposes an anomaly detection algorithm (VAEOCSVM), which combines the variable auto-encoder (VAE) and one-class support vector machine (OCSVM) to realize anomaly detection in industrial control networks. First, the VAE model is used to obtain the distribution of the original normal sample data represented by the low-dimensional code; the reconstruction error of the VAE model is merged into the new input. Then, using OCSVM’s hinge-loss objective function and the random Fourier feature fitting radial basis function (RBF) kernel method, the OCSVM model is represented and solved using the deep neural network and gradient descent method. Finally, the decision function of the OCSVM model is constructed by using the solved parameter information to realize the detection of abnormal data. The proposed algorithm is compared with other machine-learning-based anomaly detection algorithms in terms of multiple indicators such as precision, recall, and [Formula: see text] score. The experimental results using various datasets show that the proposed algorithm has a better outlier recognition ability than the machine-learning-based anomaly detection algorithms.


2020 ◽  
Vol 500 (3) ◽  
pp. 3711-3718
Author(s):  
Chris S Benson ◽  
L D Spencer ◽  
I Valtchanov ◽  
J Scott ◽  
N Hładczuk

ABSTRACT The ESA Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) Spectral Feature Finder (FF) project is an automated spectral feature fitting routine developed within the SPIRE instrument team to extract all prominent spectral features from all publicly available SPIRE FTS observations. In this work, we demonstrate the use of the FF information extracted from three observations of the edge-on spiral galaxy NGC 891 to measure the rotation of N ii and C i gas at far-infrared frequencies in complement to radio observations of the [H i] 21-cm line and the CO(1-0) transition as well as optical measurements of Hα. We find that measurements of both N ii and C i gas follow a similar velocity profile to that of H i and Hα showing a correlation between neutral and ionized regions of the interstellar medium in the disc of NGC 891.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3444
Author(s):  
Zhenyi Gao ◽  
Jiayang Sun ◽  
Haotian Yang ◽  
Jiarui Tan ◽  
Bin Zhou ◽  
...  

The identification work based on inertial data is not limited by space, and has high flexibility and concealment. Previous research has shown that inertial data contains information related to behavior categories. This article discusses whether inertial data contains information related to human identity. The classification experiment, based on the neural network feature fitting function, achieves 98.17% accuracy on the test set, confirming that the inertial data can be used for human identification. The accuracy of the classification method without feature extraction on the test set is only 63.84%, which further indicates the need for extracting features related to human identity from the changes in inertial data. In addition, the research on classification accuracy based on statistical features discusses the effect of different feature extraction functions on the results. The article also discusses the dimensionality reduction processing and visualization results of the collected data and the extracted features, which helps to intuitively assess the existence of features and the quality of different feature extraction effects.


2020 ◽  
Vol 496 (4) ◽  
pp. 4906-4922 ◽  
Author(s):  
Chris S Benson ◽  
N Hładczuk ◽  
L D Spencer ◽  
A Robb ◽  
J Scott ◽  
...  

ABSTRACT The European Space Agency Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) Spectral Feature Finder (FF) project is an automated spectral feature fitting routine developed within the SPIRE instrument team to extract all prominent spectral features from all publicly available SPIRE FTS observations. We present the extension of the FF to include the off-axis detectors of the FTS in sparsely sampled single-pointing observations, the results of which have been ingested into the catalogue. We also present the results from an automated routine for identifications of the atomic/molecular transitions that correspond to the spectral features extracted by the FF. We use a template of 307 atomic fine structure and molecular lines that are commonly found in SPIRE FTS spectra for the cross-match. The routine makes use of information provided by the line identification to search for low signal-to-noise ratio features that have been excluded or missed by the iterative FF. In total, the atomic/molecular transitions of 178 942 lines are identified (corresponding to 83 per cent of the entire FF catalogue), and an additional 33 840 spectral lines associated with missing features from SPIRE FTS observations are added to the FF catalogue.


2020 ◽  
Vol 496 (4) ◽  
pp. 4923-4930 ◽  
Author(s):  
Jeremy P Scott ◽  
Locke D Spencer ◽  
Rosalind Hopwood ◽  
Ivan Valtchanov ◽  
David A Naylor

ABSTRACT The SPIRE Fourier Transform Spectrometer (FTS) Spectral Feature Finder (FF), developed within the Herschel Spectral and Photometric Imaging Receiver (SPIRE) FTS instrument team, is an automated spectral feature fitting routine that attempts to find significant features in SPIRE FTS spectra. The 3P1–3P0 and 3P2–3P1 neutral carbon fine structure lines are common features in carbon-rich far-infrared astrophysical sources. These features can be difficult to detect using an automated feature detection routine due to their typically low amplitude and line blending. In this paper, we describe and validate the FF subroutine designed to detect the neutral carbon emission observed in SPIRE spectral data.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 530
Author(s):  
Haitao Ding ◽  
Chu Sun ◽  
Jianqiu Zeng

It is necessary to optimize clustering processing of communication big data numerical attribute feature information in order to improve the ability of numerical attribute mining of communication big data, and thus a big data clustering algorithm based on cloud computing was proposed. The cloud extended distributed feature fitting method was used to process the numerical attribute linear programming of communication big data, and the mutual information feature quantity of communication big data numerical attribute was extracted. Combined with fuzzy C-means clustering and linear regression analysis, the statistical analysis of big data numerical attribute feature information was carried out, and the associated attribute sample set of communication big data numerical attribute cloud grid distribution was constructed. Cloud computing and adaptive quantitative recurrent classifiers were used for data classification, and block template matching and multi-sensor information fusion were combined to search the clustering center automatically to improve the convergence of clustering. The simulation results show that, after the application of this method, the information fusion performance of the clustering process was better, the automatic searching ability of the data clustering center was stronger, the frequency domain equalization control effect was good, the bit error rate was low, the energy consumption was small, and the ability of fuzzy weighted clustering retrieval of numerical attributes of communication big data was effectively improved.


Sign in / Sign up

Export Citation Format

Share Document