scholarly journals Precession frequency and switching time of the magnetization vector of the spin-valve free layer with longitudinal anisotropy

2019 ◽  
Vol 1389 ◽  
pp. 012139
Author(s):  
Iuliia A Iusipova
2012 ◽  
Vol 113 (4) ◽  
pp. 341-348 ◽  
Author(s):  
V. V. Ustinov ◽  
M. A. Milyaev ◽  
L. I. Naumova ◽  
V. V. Proglyado ◽  
N. S. Bannikova ◽  
...  
Keyword(s):  

2011 ◽  
Vol 5 (12) ◽  
pp. 420-422 ◽  
Author(s):  
Alexander Makarov ◽  
Viktor Sverdlov ◽  
Dmitry Osintsev ◽  
Siegfried Selberherr

2018 ◽  
Vol 185 ◽  
pp. 01012
Author(s):  
Iuliia Iusipova

We analyze the dependence of the current density and magnetic field switching on the magnetic parameters of the material of the ferromagnetic layers of the spin valve. Comparison of critical characteristics of the spin valve with longitudinal anisotropy of ferromagnetic layers fabricared of different materials showed that the promising materials for the fabrication of spin valve are cobalt, iron, their alloys, ferroborates of cobalt and alloys of cobalt with gadolinium. For these materials we produced and analyzed the bifurcation diagrams of equations describing the switching process of the spin valve. Based on the study of the dynamics of the magnetization vector we obtained the numerical evaluation of time switching.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1013
Author(s):  
Herbert Weitensfelder ◽  
Hubert Brueckl ◽  
Armin Satz ◽  
Dieter Suess

The spin valve principle is the most prominent sensor design among giant- (GMR) and tunneling (TMR) magnetoresistive sensors. A new sensor concept with a disk shaped free layer enables the formation of a flux-closed vortex magnetization state if a certain relation of thickness to diameter is given. The low frequency noise of current-in-plane GMR sensing elements with different free layer thicknesses at different external field strengths has been measured. The measurements of the 1/f noise in external fields enabled a separation of magnetic and electric noise contributions. It has been shown that while the sensitivity is increasing with a decreasing element thickness, the pink noise contribution is increasing too. Still the detection limit at low frequencies is better in thinner free layer elements due to the higher sensitivity.


Sign in / Sign up

Export Citation Format

Share Document