gmr sensors
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Joseph Bailey

<p>The thesis investigates the use of giant magneto resistance sensors for eddy current testing in order to identify defects in steel pipes. An automated test rig which included the device under test, sensor array, excitation unit, electronic measurement equipment, mechanical setup and LabVIEW automation was designed and built. This was used to investigate the effect of excitation parameters such as current, frequency and distance to the pipe. Some preliminary algorithms to improve the signal were developed and tested. The effect of the shape and size of the defect and aluminum shield on the magnetic field was investigated. A qualitative model to describe the magnetic field, including measured defect signals, was developed. Minimum defect parameters and maximum distance values were evaluated in the context of signal to noise.</p>


2021 ◽  
Author(s):  
◽  
Joseph Bailey

<p>The thesis investigates the use of giant magneto resistance sensors for eddy current testing in order to identify defects in steel pipes. An automated test rig which included the device under test, sensor array, excitation unit, electronic measurement equipment, mechanical setup and LabVIEW automation was designed and built. This was used to investigate the effect of excitation parameters such as current, frequency and distance to the pipe. Some preliminary algorithms to improve the signal were developed and tested. The effect of the shape and size of the defect and aluminum shield on the magnetic field was investigated. A qualitative model to describe the magnetic field, including measured defect signals, was developed. Minimum defect parameters and maximum distance values were evaluated in the context of signal to noise.</p>


Author(s):  
Ana Cristina Davidas ◽  
Ovidiu Pop ◽  
Alin Grama ◽  
Elena Mirela Stetco ◽  
Traian Petrisor

Author(s):  
Nattaya Saenphum ◽  
Jessada Chureemart ◽  
Richard F L Evans ◽  
Roy W Chantrell ◽  
Phanwadee Chureemart
Keyword(s):  

Author(s):  
Candid Reig ◽  
Fernando Pardo ◽  
Jose A. Boluda ◽  
Francisco Vegara ◽  
Maria D. Cubells-Beltran ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3595
Author(s):  
Georgy V. Babaytsev ◽  
Nikolay G. Chechenin ◽  
Irina O. Dzhun ◽  
Mikhail G. Kozin ◽  
Alexey V. Makunin ◽  
...  

Magnetic field sensors based on the giant magnetoresistance (GMR) effect have a number of practical current and future applications. We report on a modeling of the magnetoresistive response of moving spin-valve (SV) GMR sensors combined in certain cluster networks to an inhomogeneous magnetic field of a label. We predicted a large variety of sensor responses dependent on the number of sensors in the cluster, their types of interconnections, the orientation of the cluster, and the trajectory of sensor motion relative to the label. The model included a specific shape of the label, producing an inhomogeneous magnetic field. The results can be used for the optimal design of positioning devices.


2021 ◽  
Author(s):  
Anwarul Islam Sifat ◽  
FJ Stevens McFadden ◽  
Joseph Bailey ◽  
Ramesh Rayudu ◽  
A Hunze

Electrical faults, which can occur at all voltage levels in an electricity supply system, are a health and safety risk. Multi-branch distribution networks represent a significant ongoing challenge for fault detection, with the greatest challenge being high impedance fault (HIF) detection. To date, research has focused at higher voltage levels and fault monitoring sensors have traditionally only been installed in limited locations within the higher voltage networks. The main contributions of this paper are to characterize a high impedance fault (HIF) involving a tree branch and to experimentally verify the feasibility of giant magneto-resistive (GMR) sensors, located distant from the overhead lines, for fault detection. In a purpose-built 400 V physical simulation test facility, we have collected current and magnetic field data during HIF involving a tree branch. We have identified new characteristics in the early stages of this fault type, which persist for a reasonable length of time but are only observable when suitable signal processing techniques are applied. New detection schemes will, therefore, need to be developed to detect such faults. GMR sensors were found to be suitable for observing the characteristics of HIF, validating their potential use for fault detection. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
Anwarul Islam Sifat ◽  
FJ Stevens McFadden ◽  
Joseph Bailey ◽  
Ramesh Rayudu ◽  
A Hunze

Electrical faults, which can occur at all voltage levels in an electricity supply system, are a health and safety risk. Multi-branch distribution networks represent a significant ongoing challenge for fault detection, with the greatest challenge being high impedance fault (HIF) detection. To date, research has focused at higher voltage levels and fault monitoring sensors have traditionally only been installed in limited locations within the higher voltage networks. The main contributions of this paper are to characterize a high impedance fault (HIF) involving a tree branch and to experimentally verify the feasibility of giant magneto-resistive (GMR) sensors, located distant from the overhead lines, for fault detection. In a purpose-built 400 V physical simulation test facility, we have collected current and magnetic field data during HIF involving a tree branch. We have identified new characteristics in the early stages of this fault type, which persist for a reasonable length of time but are only observable when suitable signal processing techniques are applied. New detection schemes will, therefore, need to be developed to detect such faults. GMR sensors were found to be suitable for observing the characteristics of HIF, validating their potential use for fault detection. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Author(s):  
Fanda Meng ◽  
Weisong Huo ◽  
Jie Lian ◽  
Lei Zhang ◽  
Xizeng Shi ◽  
...  

AbstractWe report a microfluidic sandwich immunoassay constructed around a dual-giant magnetoresistance (GMR) sensor array to quantify the heart failure biomarker NT-proBNP in human plasma at the clinically relevant concentration levels between 15 pg/mL and 40 ng/mL. The broad dynamic range was achieved by differential coating of two identical GMR sensors operated in tandem, and combining two standard curves. The detection limit was determined as 5 pg/mL. The assay, involving 53 plasma samples from patients with different cardiovascular diseases, was validated against the Roche Cobas e411 analyzer. The salient features of this system are its wide concentration range, low detection limit, small sample volume requirement (50 μL), and the need for a short measurement time of 15 min, making it a prospective candidate for practical use in point of care analysis.


2021 ◽  
Vol 70 ◽  
pp. 1-10
Author(s):  
Tapabrata Sen ◽  
Anoop Chandrika Sreekantan ◽  
Siddhartha Sen

Sign in / Sign up

Export Citation Format

Share Document