ferromagnetic layers
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Xing Chen ◽  
Cuixiu Zheng ◽  
Sai Zhou ◽  
Yaowen Liu ◽  
Zongzhi Zhang

Magnons (the quanta of spin waves) could be used to encode information in beyond Moore computing applications. In this study, the magnon coupling between acoustic mode and optic mode in synthetic antiferromagnets (SAFs) is investigated by micromagnetic simulations. For a symmetrical SAF system, the time-evolution magnetizations of the two ferromagnetic layers oscillate in-phase at the acoustic mode and out-of-phase at the optic mode, showing an obvious crossing point in their antiferromagnetic resonance spectra. However, the symmetry breaking in an asymmetrical SAF system by the thickness difference, can induce an anti-crossing gap between the two frequency branches of resonance modes and thereby a strong magnon-magnon coupling appears between the resonance modes. The magnon coupling induced a hybridized resonance mode and its phase difference varies with the coupling strength. The maximum coupling occurs at the bias magnetic field at which the two ferromagnetic layers oscillate with a 90° phase difference. Besides, we show how the resonance modes in SAFs change from the in-phase state to the out-of-phase state by slightly tuning the magnon-magnon coupling strength. Our work provides a clear physical picture for the understanding of magnon-magnon coupling in a SAF system and may provide an opportunity to handle the magnon interaction in synthetic antiferromagnetic spintronics.


2021 ◽  
Author(s):  
Igor Yanilkin ◽  
Amir Gumarov ◽  
Gulnaz Gizzatullina ◽  
Roman Yusupov ◽  
Lenar Tagirov

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with the dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.


2021 ◽  
Vol 16 (5) ◽  
Author(s):  
Kevin Elphick ◽  
Kenta Yoshida ◽  
Tufan Roy ◽  
Tomohiro Ichinose ◽  
Kazuma Kunimatsu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6728
Author(s):  
Stanislav O. Volchkov ◽  
Anna A. Pasynkova ◽  
Michael S. Derevyanko ◽  
Dmitry A. Bukreev ◽  
Nikita V. Kozlov ◽  
...  

Soft magnetic materials are widely requested in electronic and biomedical applications. Co-based amorphous ribbons are materials which combine high value of the magnetoimpedance effect (MI), high sensitivity with respect to the applied magnetic field, good corrosion stability in aggressive environments, and reasonably low price. Functional properties of ribbon-based sensitive elements can be modified by deposition of additional magnetic and non-ferromagnetic layers with required conductivity. Such layers can play different roles. In the case of magnetic biosensors for magnetic label detection, they can provide the best conditions for self-assembling processes in biological experiments. In this work, magnetic properties and MI effect were studied for the cases of rapidly quenched Co67Fe3Cr3Si15B12 amorphous ribbons and magnetic Fe20Ni80/Co67Fe3Cr3Si15B12/Fe20Ni80 composites obtained by deposition of Fe20Ni80 1 μm thick films onto both sides of the ribbons by magnetron sputtering technique. Their comparative analysis was used for finite element computer simulations of MI responses with different types of magnetic and conductive coatings. The obtained results can be useful for the design of MI sensor development, including MI biosensors for magnetic label detection.


2021 ◽  
Vol 7 (9) ◽  
pp. 126
Author(s):  
David S. Schmool ◽  
Daniel Markó ◽  
Ko-Wei Lin ◽  
Aurelio Hierro-Rodríguez ◽  
Carlos Quirós ◽  
...  

Ferromagnetic resonance is a powerful method for the study of all classes of magnetic materials. The experimental technique has been used for many decades and is based on the excitation of a magnetic spin system via a microwave (or rf) field. While earlier methods were based on the use of a microwave spectrometer, more recent developments have seen the widespread use of the vector network analyzer (VNA), which provides a more versatile measurement system at almost comparable sensitivity. While the former is based on a fixed frequency of excitation, the VNA enables frequency-dependent measurements, allowing more in-depth analysis. We have applied this technique to the study of nanostructured thin films or nanodots and coupled magnetic layer systems comprised of exchange-coupled ferromagnetic layers with in-plane and perpendicular magnetic anisotropies. In the first system, we have investigated the magnetization dynamics in Co/Ag bilayers and nanodots. In the second system, we have studied Permalloy (Ni80Fe20, hereafter Py) thin films coupled via an intervening Al layer of varying thickness to a NdCo film which has perpendicular magnetic anisotropy.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1021
Author(s):  
Arpita Koley ◽  
Santanu K. Maiti ◽  
Laura M. Pérez ◽  
Judith Helena Ojeda Silva ◽  
David Laroze

In this work, we perform a numerical study of magnetoresistance in a one-dimensional quantum heterostructure, where the change in electrical resistance is measured between parallel and antiparallel configurations of magnetic layers. This layered structure also incorporates a non-magnetic spacer, subjected to quasi-periodic potentials, which is centrally clamped between two ferromagnetic layers. The efficiency of the magnetoresistance is further tuned by injecting unpolarized light on top of the two sided magnetic layers. Modulating the characteristic properties of different layers, the value of magnetoresistance can be enhanced significantly. The site energies of the spacer is modified through the well-known Aubry–André and Harper (AAH) potential, and the hopping parameter of magnetic layers is renormalized due to light irradiation. We describe the Hamiltonian of the layered structure within a tight-binding (TB) framework and investigate the transport properties through this nanojunction following Green’s function formalism. The Floquet–Bloch (FB) anstaz within the minimal coupling scheme is introduced to incorporate the effect of light irradiation in TB Hamiltonian. Several interesting features of magnetotransport properties are represented considering the interplay between cosine modulated site energies of the central region and the hopping integral of the magnetic regions that are subjected to light irradiation. Finally, the effect of temperature on magnetoresistance is also investigated to make the model more realistic and suitable for device designing. Our analysis is purely a numerical one, and it leads to some fundamental prescriptions of obtaining enhanced magnetoresistance in multilayered systems.


2021 ◽  
Vol 12 ◽  
pp. 913-923
Author(s):  
Olena M Kapran ◽  
Roman Morari ◽  
Taras Golod ◽  
Evgenii A Borodianskyi ◽  
Vladimir Boian ◽  
...  

Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis. We demonstrate how FORC can be used for detailed in situ characterization of magnetic states. It reveals that upon reduction of the external field, the magnetization in ferromagnetic layers first rotates in a coherent scissor-like manner, then switches abruptly into the antiparallel state and after that splits into the polydomain state, which gradually turns into the opposite parallel state. The polydomain state is manifested by a profound enhancement of resistance caused by a flux-flow phenomenon, triggered by domain stray fields. The scissor state represents the noncollinear magnetic state in which the unconventional odd-frequency spin-triplet order parameter should appear. The non-hysteretic nature of this state allows for reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for in situ control of devices based on S/F heterostructures.


2021 ◽  
Vol 7 (25) ◽  
pp. eabe8638
Author(s):  
Igor A. Golovchanskiy ◽  
Nikolay N. Abramov ◽  
Vasily S. Stolyarov ◽  
Martin Weides ◽  
Valery V. Ryazanov ◽  
...  

The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 507
Author(s):  
Vasiliy N. Kushnir ◽  
Serghej L. Prischepa ◽  
Michela Trezza ◽  
Carla Cirillo ◽  
Carmine Attanasio

The stray fields produced by ferromagnetic layers in Superconductor/Insulator/Ferromagnet (S/I/F) heterostructures may strongly influence their superconducting properties. Suitable magnetic configurations can be exploited to manipulate the main parameters of the hybrids. Here, the nucleation of the superconducting phase in an external magnetic field that periodically oscillates along the film width is studied on the base of the numerical solution of the linearized system of Usadel equations. In addition, the effect of the magnetic configuration of the F-layer on the temperature dependence of the critical current density, Jc(T), is investigated in the framework of the Ginzburg–Landau phenomenological theory on the base of the oscillating model of a stray field. By following this approach, the Jc(T) dependence of a Nb/SiO2/PdNi trilayer is reproduced for different magnetic configurations of the PdNi layer.


Sign in / Sign up

Export Citation Format

Share Document