scholarly journals Possible scenarios of transition to the closed nuclear fuel cycle

2020 ◽  
Vol 1475 ◽  
pp. 012004
Author(s):  
P N Alekseev ◽  
A V Gurin ◽  
S A Subbotin ◽  
B Ya Zilberman ◽  
N V Kovalev
Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Przemysław Stanisz ◽  
Jerzy Cetnar ◽  
Grażyna Domańska

Abstract The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR) was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System) and LEADER (Lead-cooled European Advanced Demonstration Reactor) projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA) are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs), and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB) code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
W. F. G. van Rooijen ◽  
J. L. Kloosterman

The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all Heavy Metal isotopes are to be recycled in the reactor. In this paper, an overview is presented of recent results obtained in the study of the closed fuel cycle and the influence of the addition of extra Minor Actinide (MA) isotopes from existing LWR stockpiles. In the presented work, up to 10% of the fuel was homogeneously replaced by an MA-mixture. The results are that addition of MA increases the potential of obtaining a closed fuel cycle. Reactivity coefficients generally decrease with increasing MA content. Addition of MA reduces the reactivity swing and allows very long irradiation intervals up to 10% FIMA with a small reactivity swing. Multirecycling studies show that a 600 MWth GCFR can transmute the MA from several PWRs. By a careful choice of the MA-fraction in the fuel, the reactivity of the fuel can be tuned to obtain a preset multiplication factor at end of cycle. Preliminary decay heat calculations show that the presence of MA in the fuel significantly increases the decay heat for time periods relevant to accidents (104–105s after shutdown). The paper ends with some recommendations for future research in this promising area of the nuclear fuel cycle.


Atomic Energy ◽  
2017 ◽  
Vol 122 (2) ◽  
pp. 106-111 ◽  
Author(s):  
O. V. Shmidt ◽  
S. G. Tret’yakova ◽  
Yu. A. Evsyukova ◽  
I. R. Makeeva ◽  
V. G. Dubosarskii ◽  
...  

2017 ◽  
Vol 153 ◽  
pp. 07031
Author(s):  
Georgy Tikhomirov ◽  
Mikhail Ternovykh ◽  
Ivan Saldikov ◽  
Peter Fomichenko ◽  
Alexander Gerasimov

2019 ◽  
Vol 5 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrey A. Andrianov ◽  
Ilya S. Kuptsov ◽  
Tatyana A. Osipova ◽  
Olga N. Andrianova ◽  
Tatyana V. Utyanskaya

The article presents a description and some illustrative results of the application of two optimization models for a two-component nuclear energy system consisting of thermal and fast reactors in a closed nuclear fuel cycle. These models correspond to two possible options of developing Russian nuclear energy system, which are discussed in the expert community: (1) thermal and fast reactors utilizing uranium and mixed oxide fuel, (2) thermal reactors utilizing uranium oxide fuel and fast reactors utilizing mixed nitride uranium-plutonium fuel. The optimization models elaborated using the IAEA MESSAGE energy planning tool make it possible not only to optimize the nuclear energy system structure according to the economic criterion, taking into account resource and infrastructural constraints, but also to be used as a basis for developing multi-objective, stochastic and robust optimization models of a two-component nuclear energy system. These models were elaborated in full compliance with the recommendations of the IAEA’s PESS and INPRO sections, regarding the specification of nuclear energy systems in MESSAGE. The study is based on publications of experts from NRC “Kurchatov Institute”, JSC “SSC RF-IPPE”, ITCP “Proryv”, JSC “NIKIET”. The presented results demonstrate the characteristic structural features of a two-component nuclear energy system for conservative assumptions in order to illustrate the capabilities of the developed optimization models. Consideration is also given to the economic feasibility of a technologically diversified nuclear energy structure providing the possibility of forming on its base a robust system in the future. It has been demonstrated that given the current uncertainties in the costs of nuclear fuel cycle services and reactor technologies, it is impossible at the moment to make a reasonable conclusion regarding the greatest attractiveness of a particular option in terms of the economic performance.


2020 ◽  
Vol 6 (4) ◽  
pp. 243-247
Author(s):  
Anton S. Lapin ◽  
Aleksandr S. Bobryashov ◽  
Victor Yu. Blandinsky ◽  
Yevgeny A. Bobrov

For 60 years of its existence, nuclear energy has passed the first stage of its development and has proven that it can become a powerful industry, going beyond the 10% level in the global balance of energy production. Despite this, modern nuclear industry is capable of producing economically acceptable energy only from uranium-235 or plutonium, obtained as a by-product of the use of low enriched uranium for energy production or surplus weapons-grade plutonium. In this case, nuclear energy cannot claim to be a technology that can solve the problems of energy security and sustainable development, since it meets the same economic and ‘geological’ problems as other technologies do, based on the use of exhaustible organic resources. The solution to this problem will require a new generation of reactors to drastically improve fuel-use characteristics. In particular, reactors based on the use of water cooling technology should significantly increase the efficiency of using U-238 in order to reduce the need for natural uranium in a nuclear energy system. To achieve this goal, it will be necessary to transit to a closed nuclear fuel cycle and, therefore, to improve the performance of a light-water reactor system. The paper considers the possibility of using a reactor with a fast-resonance neutron spectrum cooled by supercritical water (SCWR). The SCWR can be effectively used in a closed nuclear fuel cycle, since it makes it possible to use spent fuel and discharge uranium with a small amount of plutonium added. The authors discuss the selected layout of the core with a change in its size as well as the size of the breeding regions (blankets). MOX fuel with an isotopic plutonium content corresponding to that discharged from the VVER-1000 reactor is considered as fuel. For the selected layout, a study was made of the reactor system features. Compared with existing light-water reactors, this reactor type has increased fuel consumption due to its improved efficiency and nuclear fuel breeding rate up to 1 and above.


Sign in / Sign up

Export Citation Format

Share Document