scholarly journals Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
W. F. G. van Rooijen ◽  
J. L. Kloosterman

The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all Heavy Metal isotopes are to be recycled in the reactor. In this paper, an overview is presented of recent results obtained in the study of the closed fuel cycle and the influence of the addition of extra Minor Actinide (MA) isotopes from existing LWR stockpiles. In the presented work, up to 10% of the fuel was homogeneously replaced by an MA-mixture. The results are that addition of MA increases the potential of obtaining a closed fuel cycle. Reactivity coefficients generally decrease with increasing MA content. Addition of MA reduces the reactivity swing and allows very long irradiation intervals up to 10% FIMA with a small reactivity swing. Multirecycling studies show that a 600 MWth GCFR can transmute the MA from several PWRs. By a careful choice of the MA-fraction in the fuel, the reactivity of the fuel can be tuned to obtain a preset multiplication factor at end of cycle. Preliminary decay heat calculations show that the presence of MA in the fuel significantly increases the decay heat for time periods relevant to accidents (104–105s after shutdown). The paper ends with some recommendations for future research in this promising area of the nuclear fuel cycle.

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Przemysław Stanisz ◽  
Jerzy Cetnar ◽  
Grażyna Domańska

Abstract The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR) was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System) and LEADER (Lead-cooled European Advanced Demonstration Reactor) projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA) are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs), and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB) code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.


2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


2017 ◽  
Vol 153 ◽  
pp. 07031
Author(s):  
Georgy Tikhomirov ◽  
Mikhail Ternovykh ◽  
Ivan Saldikov ◽  
Peter Fomichenko ◽  
Alexander Gerasimov

2015 ◽  
Vol 103 (3) ◽  
Author(s):  
Andrey Yurevich Shadrin ◽  
Konstantin Nikolaevich Dvoeglazov ◽  
Valentine Borisovich Ivanov ◽  
Vladimir Ivanovich Volk ◽  
Mikhail Vladimirovich Skupov ◽  
...  

AbstractThe strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.


2021 ◽  
Vol 7 ◽  
pp. 26
Author(s):  
S. Richards ◽  
B. Feng

The ability to perform sensitivity analysis has been enabled for the nuclear fuel cycle simulator DYMOND through its coupling with the design and analysis toolkit Dakota. To test and demonstrate these new capabilities, a transition scenario and multi-parameter study were devised. The transition scenario represents a partial transition from the US nuclear fleet to a closed fuel cycle with small modular LWRs and fast reactors fueled by reprocessed used nuclear fuel. Four uncertain parameters in this transition were studied – start date of reprocessing, total reprocessing capacity, the nuclear energy demand growth, and the rate at which the fast reactors are deployed – with respect to their impact on four response metrics. The responses – total natural uranium consumed, maximum annual enrichment capacity required, total disposed mass, and total cost of the nuclear fuel cycle – were chosen based on measures known to be of interest in transition scenarios [2] and to be significantly impacted by the varying parameters. Analysis of this study was performed both from the direct sampling and through surrogate models developed in Dakota to calculate the global sensitivity measures Sobol’ indices. This example application of this new capability showed that the most consequential parameter to most metrics was the share of new build capacity that is fast reactors. However, for the cost metric, the scaling factor of the energy demand growth was significant and had synergistic behavior with the fast reactor new build share.


Atomic Energy ◽  
2017 ◽  
Vol 122 (2) ◽  
pp. 106-111 ◽  
Author(s):  
O. V. Shmidt ◽  
S. G. Tret’yakova ◽  
Yu. A. Evsyukova ◽  
I. R. Makeeva ◽  
V. G. Dubosarskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document