scholarly journals Voice Command Intelligent System (VCIS) for Smart Home Application using Mel-frequency cepstral coefficients and linear prediction coefficients

2020 ◽  
Vol 1535 ◽  
pp. 012008
Author(s):  
Yusnita Mohd Ali ◽  
Nor Fadzilah Mokhtar ◽  
Emilia Noorsal ◽  
Aida Zulia Zulhanip ◽  
Asmalia Zanal ◽  
...  
Author(s):  
Murugaiya Ramashini ◽  
P. Emeroylariffion Abas ◽  
Kusuma Mohanchandra ◽  
Liyanage C. De Silva

Birds are excellent environmental indicators and may indicate sustainability of the ecosystem; birds may be used to provide provisioning, regulating, and supporting services. Therefore, birdlife conservation-related researches always receive centre stage. Due to the airborne nature of birds and the dense nature of the tropical forest, bird identifications through audio may be a better solution than visual identification. The goal of this study is to find the most appropriate cepstral features that can be used to classify bird sounds more accurately. Fifteen (15) endemic Bornean bird sounds have been selected and segmented using an automated energy-based algorithm. Three (3) types of cepstral features are extracted; linear prediction cepstrum coefficients (LPCC), mel frequency cepstral coefficients (MFCC), gammatone frequency cepstral coefficients (GTCC), and used separately for classification purposes using support vector machine (SVM). Through comparison between their prediction results, it has been demonstrated that model utilising GTCC features, with 93.3% accuracy, outperforms models utilising MFCC and LPCC features. This demonstrates the robustness of GTCC for bird sounds classification. The result is significant for the advancement of bird sound classification research, which has been shown to have many applications such as in eco-tourism and wildlife management.


Author(s):  
T. R. Jayanthi Kumari ◽  
H. S. Jayanna

<p>The present work demonstrates experimental evaluation of speaker verification for different speech feature extraction techniques with the constraints of limited data (less than 15 seconds). The state-of-the-art speaker verification techniques provide good performance for sufficient data (greater than 1 minutes). It is a challenging task to develop techniques which perform well for speaker verification under limited data condition. In this work different features like Mel Frequency Cepstral Coefficients (MFCC), Linear Prediction Cepstral Coefficients (LPCC), Delta (4), Delta-Delta (44), Linear Prediction Residual (LPR) and Linear Prediction Residual Phase (LPRP) are considered. The performance of individual features is studied and for better verification performance, combination of these features is attempted. A comparative study is made between Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) through experimental evaluation. The experiments are conducted using NIST-2003 database. The experimental results show that, the combination of features provides better performance compared to the individual features. Further GMM-UBM modeling gives reduced equal error rate (EER) as compared to GMM.</p>


2017 ◽  
Vol 24 (2) ◽  
pp. 17-26
Author(s):  
Mustafa Yagimli ◽  
Huseyin Kursat Tezer

Abstract The real-time voice command recognition system used for this study, aims to increase the situational awareness, therefore the safety of navigation, related especially to the close manoeuvres of warships, and the courses of commercial vessels in narrow waters. The developed system, the safety of navigation that has become especially important in precision manoeuvres, has become controllable with voice command recognition-based software. The system was observed to work with 90.6% accuracy using Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW) parameters and with 85.5% accuracy using Linear Predictive Coding (LPC) and DTW parameters.


Sign in / Sign up

Export Citation Format

Share Document