scholarly journals Bayesian model comparison in gravitational wave data analysis

2009 ◽  
Vol 154 ◽  
pp. 012044
Author(s):  
Massimo Tinto ◽  
Richard Umstatter
2019 ◽  
Vol 487 (3) ◽  
pp. 3644-3649 ◽  
Author(s):  
Haochen Wang ◽  
Stephen R Taylor ◽  
Michele Vallisneri

ABSTRACT Gravitational-wave data analysis demands sophisticated statistical noise models in a bid to extract highly obscured signals from data. In Bayesian model comparison, we choose among a landscape of models by comparing their marginal likelihoods. However, this computation is numerically fraught and can be sensitive to arbitrary choices in the specification of parameter priors. In Bayesian cross validation, we characterize the fit and predictive power of a model by computing the Bayesian posterior of its parameters in a training data set, and then use that posterior to compute the averaged likelihood of a different testing data set. The resulting cross-validation scores are straightforward to compute; they are insensitive to prior tuning; and they penalize unnecessarily complex models that overfit the training data at the expense of predictive performance. In this article, we discuss cross validation in the context of pulsar-timing-array data analysis, and we exemplify its application to simulated pulsar data (where it successfully selects the correct spectral index of a stochastic gravitational-wave background), and to a pulsar data set from the NANOGrav 11-yr release (where it convincingly favours a model that represents a transient feature in the interstellar medium). We argue that cross validation offers a promising alternative to Bayesian model comparison, and we discuss its use for gravitational-wave detection, by selecting or refuting models that include a gravitational-wave component.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243390
Author(s):  
Eduardo G. Altmann

Analyses of urban scaling laws assume that observations in different cities are independent of the existence of nearby cities. Here we introduce generative models and data-analysis methods that overcome this limitation by modelling explicitly the effect of interactions between individuals at different locations. Parameters that describe the scaling law and the spatial interactions are inferred from data simultaneously, allowing for rigorous (Bayesian) model comparison and overcoming the problem of defining the boundaries of urban regions. Results in five different datasets show that including spatial interactions typically leads to better models and a change in the exponent of the scaling law.


2014 ◽  
pp. 101-117
Author(s):  
Michael D. Lee ◽  
Eric-Jan Wagenmakers

2018 ◽  
Vol 265 ◽  
pp. 271-278 ◽  
Author(s):  
Tyler B. Grove ◽  
Beier Yao ◽  
Savanna A. Mueller ◽  
Merranda McLaughlin ◽  
Vicki L. Ellingrod ◽  
...  

2008 ◽  
Vol 678 (2) ◽  
pp. 1142-1157 ◽  
Author(s):  
T. Z. Summerscales ◽  
Adam Burrows ◽  
Lee Samuel Finn ◽  
Christian D. Ott

2021 ◽  
Author(s):  
John K. Kruschke

In most applications of Bayesian model comparison or Bayesian hypothesis testing, the results are reported in terms of the Bayes factor only, not in terms of the posterior probabilities of the models. Posterior model probabilities are not reported because researchers are reluctant to declare prior model probabilities, which in turn stems from uncertainty in the prior. Fortunately, Bayesian formalisms are designed to embrace prior uncertainty, not ignore it. This article provides a novel derivation of the posterior distribution of model probability, and shows many examples. The posterior distribution is useful for making decisions taking into account the uncertainty of the posterior model probability. Benchmark Bayes factors are provided for a spectrum of priors on model probability. R code is posted at https://osf.io/36527/. This framework and tools will improve interpretation and usefulness of Bayes factors in all their applications.


Sign in / Sign up

Export Citation Format

Share Document