scholarly journals Physical controls in the simulation of hydraulic networks in buildings using Epanet 2.0 software

2020 ◽  
Vol 1708 ◽  
pp. 012028
Author(s):  
N J Cely-Calixto
2012 ◽  
Vol 16 (11) ◽  
pp. 4483-4498 ◽  
Author(s):  
M. Yaeger ◽  
E. Coopersmith ◽  
S. Ye ◽  
L. Cheng ◽  
A. Viglione ◽  
...  

Abstract. The paper reports on a four-pronged study of the physical controls on regional patterns of the flow duration curve (FDC). This involved a comparative analysis of long-term continuous data from nearly 200 catchments around the US, encompassing a wide range of climates, geology, and ecology. The analysis was done from three different perspectives – statistical analysis, process-based modeling, and data-based classification – followed by a synthesis, which is the focus of this paper. Streamflow data were separated into fast and slow flow responses, and associated signatures, and both total flow and its components were analyzed to generate patterns. Regional patterns emerged in all aspects of the study. The mixed gamma distribution described well the shape of the FDC; regression analysis indicated that certain climate and catchment properties were first-order controls on the shape of the FDC. In order to understand the spatial patterns revealed by the statistical study, and guided by the hypothesis that the middle portion of the FDC is a function of the regime curve (RC, mean within-year variation of flow), we set out to classify these catchments, both empirically and through process-based modeling, in terms of their regime behavior. The classification analysis showed that climate seasonality and aridity, either directly (empirical classes) or through phenology (vegetation processes), were the dominant controls on the RC. Quantitative synthesis of these results determined that these classes were indeed related to the FDC through its slope and related statistical parameters. Qualitative synthesis revealed much diversity in the shapes of the FDCs even within each climate-based homogeneous class, especially in the low-flow tails, suggesting that catchment properties may have become the dominant controls. Thus, while the middle portion of the FDC contains the average response of the catchment, and is mainly controlled by climate, the tails of the FDC, notably the low-flow tails, are mainly controlled by catchment properties such as geology and soils. The regime behavior explains only part of the FDC; to gain a deeper understanding of the physical controls on the FDC, these extremes must be analyzed as well. Thus, to completely separate the climate controls from the catchment controls, the roles of catchment properties such as soils, geology, topography etc. must be explored in detail.


1969 ◽  
Vol 95 (1) ◽  
pp. 538-544
Author(s):  
Filippo Zoccoli ◽  
Augusto Zanotti ◽  
Phillip L. Buckingham
Keyword(s):  

Author(s):  
P. A. Drakatos ◽  
S. P. Drakatos

Abstract This paper is concerned with Analysis of Vibration and Noise in a hydraulic networks. In the analysis it is tried to find the discrete frequencies. So, we are able to recognize the damages or to redesign the system. The most important effectiveness on the system ought to the flow in the phase of vorticity.


1971 ◽  
Vol 43 (2) ◽  
pp. 218-225 ◽  
Author(s):  
T. A. Porsching ◽  
J. H. Murphy ◽  
J. A. Redfield

2012 ◽  
Vol 16 (11) ◽  
pp. 4435-4446 ◽  
Author(s):  
L. Cheng ◽  
M. Yaeger ◽  
A. Viglione ◽  
E. Coopersmith ◽  
S. Ye ◽  
...  

Abstract. The flow duration curve (FDC) is a classical method used to graphically represent the relationship between the frequency and magnitude of streamflow. In this sense it represents a compact signature of temporal runoff variability that can also be used to diagnose catchment rainfall-runoff responses, including similarity and differences between catchments. This paper is aimed at extracting regional patterns of the FDCs from observed daily flow data and elucidating the physical controls underlying these patterns, as a way to aid towards their regionalization and predictions in ungauged basins. The FDCs of total runoff (TFDC) using multi-decadal streamflow records for 197 catchments across the continental United States are separated into the FDCs of two runoff components, i.e., fast flow (FFDC) and slow flow (SFDC). In order to compactly display these regional patterns, the 3-parameter mixed gamma distribution is employed to characterize the shapes of the normalized FDCs (i.e., TFDC, FFDC and SFDC) over the entire data record. This is repeated to also characterize the between-year variability of "annual" FDCs for 8 representative catchments chosen across a climate gradient. Results show that the mixed gamma distribution can adequately capture the shapes of the FDCs and their variation between catchments and also between years. Comparison between the between-catchment and between-year variability of the FDCs revealed significant space-time symmetry. Possible relationships between the parameters of the fitted mixed gamma distribution and catchment climatic and physiographic characteristics are explored in order to decipher and point to the underlying physical controls. The baseflow index (a surrogate for the collective impact of geology, soils, topography and vegetation, as well as climate) is found to be the dominant control on the shapes of the normalized TFDC and SFDC, whereas the product of maximum daily precipitation and the fraction of non-rainy days was found to control the shape of the FFDC. These relationships, arising from the separation of total runoff into its two components, provide a potential physical basis for regionalization of FDCs, as well as providing a conceptual framework for developing deeper process-based understanding of the FDCs.


2014 ◽  
Vol 8 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
J. Zhou ◽  
J.-L. Tison ◽  
G. Carnat ◽  
N.-X. Geilfus ◽  
B. Delille

Abstract. We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged from 25.9 to 116.4 nmol L−1sw, indicating a supersaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations in sea ice ranged from 3.4 to 17.2 nmol L−1ice and the deduced CH4 concentrations in brine from 13.2 to 677.7 nmol L−1brine. We investigated the processes underlying the difference in CH4 concentrations between sea ice, brine and under-ice water and suggest that biological controls on the storage of CH4 in ice were minor in comparison to the physical controls. Two physical processes regulated the storage of CH4 in our landfast ice samples: bubble formation within the ice and sea ice permeability. Gas bubble formation due to brine concentration and solubility decrease favoured the accumulation of CH4 in the ice at the beginning of ice growth. CH4 retention in sea ice was then twice as efficient as that of salt; this also explains the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient, CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marked the end of CH4 storage.


Sign in / Sign up

Export Citation Format

Share Document