landfast sea ice
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Qingkai Wang ◽  
Zhaoquan Li ◽  
Peng Lu ◽  
Yigang Xu ◽  
Zhijun Li

Abstract. A total of 25 flexural and 55 uniaxial compressive strength tests were conducted using landfast sea ice samples collected in the Prydz Bay. Three-point bending tests were performed at ice temperatures of −12 to −3 °C with force applied vertically to original ice surface, and compressive tests were performed at −3 °C with a strain-rate level of 10−6–10−2 s−1 in the directions vertical and horizontal to ice surface. Judging from crystal structure, the ice samples were divided into congelation ice, snow ice, and a mixture of the these two. The results of congelation ice showed that the flexural strength had a decreasing trend depending on porosity rather than brine volume, based on which a mathematical equation was established to estimate flexural strength. Both flexural strength and effective modulus increased with increasing platelet spacing. The uniaxial compressive strength increased and decreased with strain rate below and above the critical regime, respectively, which is 8.0 × 10−4–1.5 × 10−3 s−1 for vertically loaded samples and 2.0 × 10−3–3.0 × 10−3 s−1 for horizontally loaded samples. A drop off in compressive strength was shown with increasing sea ice porosity. Consequently, a model was developed to depict the combined effects of porosity and strain rate on compressive strength in both ductile and brittle regimes. The mechanical strength of mixed ice was lower than congelation ice, and that of snow ice was much weaker. To provide a safe guide for the transportation of goods on landfast sea ice in the Prydz Bay, the bearing capacity of the ice cover is estimated with the lower and upper envelopes of flexural strength and effective modulus, respectively, which turned out to be a function of sea ice porosity.


2021 ◽  
Author(s):  
Reishi Sahashi ◽  
Daiki Nomura ◽  
Takenobu Toyota ◽  
Manami Tozawa ◽  
Masato Ito ◽  
...  
Keyword(s):  
Sea Ice ◽  

2021 ◽  
Vol 13 (22) ◽  
pp. 4570
Author(s):  
Zhaohua Chen ◽  
Benoit Montpetit ◽  
Sarah Banks ◽  
Lori White ◽  
Amir Behnamian ◽  
...  

Arctic amplification is accelerating changes in sea ice regimes in the Canadian Arctic with later freeze-up and earlier melt events, adversely affecting Arctic wildlife and communities that depend on the stability of sea ice conditions. To monitor both the rate and impact of such change, there is a need to accurately measure sea ice deformation, an important component for understanding ice motion and polar climate. The objective of this study is to determine the spatial-temporal pattern of deformation over landfast ice in the Arctic using time series SAR imagery. We present Interferometric Synthetic Aperture Radar (InSAR) monitoring of Arctic landfast sea ice deformation using C-band Radarsat-2, Sentinel-1 and L-band ALOS-2 in this paper. The small baseline subset (SBAS) approach was explored to process time series observations for retrieval of temporal deformation changes along a line-of-sight direction (LOS) over the winter. It was found that temporal and spatial patterns of deformation observed from different sensors were generally consistent. Horizontal and vertical deformations were also retrieved by a multi-dimensional SBAS technique using both ascending and descending Sentinel-1 observations. Results showed a horizontal deformation in the range of -95-85 cm, and vertical deformation in the range of -41-63 cm in Cambridge Bay, Nunavut, Canada during February-April 2019. High coherence over ice from C-band was maintained over a shorter time interval of acquisitions than L-band due to temporal decorrelation.


2021 ◽  
pp. 101920
Author(s):  
Guillian Van Achter ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Charles Pelletier ◽  
Jean Sterlin ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Haakon Hop ◽  
Mikko Vihtakari ◽  
Bodil A. Bluhm ◽  
Malin Daase ◽  
Rolf Gradinger ◽  
...  

Sea-ice macrofauna includes ice amphipods and benthic amphipods, as well as mysids. Amphipods are important components of the sympagic food web, which is fuelled by the production of ice algae. Data on the diversity of sea-ice biota have been collected as a part of scientific expeditions over decades, and here we present a pan-Arctic analysis of data on ice-associated amphipods and mysids assimilated over 35 years (1977–2012). The composition of species differed among the 13 locations around the Arctic, with main differences between basins and shelves and also between communities in drift ice and landfast sea ice. The sea ice has been dramatically reduced in extent and thickness during the recorded period, which has resulted in reduced abundance of ice amphipods as well as benthic amphipods in sea ice from the 1980’s to the 2010’s. The decline mainly involved Gammarus wilkitzkii coinciding with the disappearance of much of the multiyear sea ice, which is an important habitat for this long-lived species. Benthic amphipods were most diverse, and also showed a decline over the time-span. They had higher abundance closer to land where they are associated with landfast ice. However, they also occurred in the Central Arctic Ocean, which is likely related to the origin of sea ice over shallow water and subsequent transport in the transpolar ice drift. Recent sampling in the waters east and north of Svalbard has found continued presence of Apherusa glacialis, but almost no G. wilkitzkii. Monitoring by standardized methods is needed to detect further changes in community composition of ice amphipods related to reductions in sea-ice cover and ice type.


2021 ◽  
pp. 1-13
Author(s):  
Mengxi Zhai ◽  
Bin Cheng ◽  
Matti Leppäranta ◽  
Fengming Hui ◽  
Xinqing Li ◽  
...  

Abstract Arctic landfast sea ice (LFSI) represents an important quasi-stationary coastal zone. Its evolution is determined by the regional climate and bathymetry. This study investigated the seasonal cycle and interannual variations of LFSI along the northwest coast of Kotelny Island. Initial freezing, rapid ice formation, stable and decay stages were identified in the seasonal cycle based on application of the visual inspection approach (VIA) to MODIS/Envisat imagery and results from a thermodynamic snow/ice model. The modeled annual maximum ice thickness in 1995–2014 was 2.02 ± 0.12 m showing a trend of −0.13 m decade−1. Shortened ice season length (−22 d decade−1) from model results associated with substantial spring (2.3°C decade−1) and fall (1.9°C decade−1) warming. LFSI break-up resulted from combined fracturing and melting, and the local spatiotemporal patterns of break-up were associated with the irregular bathymetry. Melting dominated the LFSI break-up in the nearshore sheltered area, and the ice thickness decreased to an average of 0.50 m before the LFSI disappeared. For the LFSI adjacent to drift ice, fracturing was the dominant process and the average ice thickness was 1.56 m at the occurrence of the fracturing. The LFSI stages detected by VIA were supported by the model results.


2021 ◽  
Author(s):  
Alexander D. Fraser ◽  
Robert A. Massom ◽  
Mark S. Handcock ◽  
Phillip Reid ◽  
Kay I. Ohshima ◽  
...  

Abstract. Landfast sea ice (fast ice) is an important though poorly-understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere-ocean-ice sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals a) an overall trend of −882 ± 824 km²/y (−0.19 ± 0.18 %/y); and b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18 y period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen sea, with this region claiming the largest positive trend of +1,198 ± 359 km²/y (+1.10 ± 0.35 %/y). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of −1,206 ± 277 km²/y (−1.78 ± 0.41 %/y) occurring in the Victoria and Oates Lands region in the eastern Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system that is vulnerable to climate variability and change. It will also inform a wide range of other studies.


2021 ◽  
Author(s):  
Guillian Van Achter ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Charles Pelletier ◽  
Jean Sterlin ◽  
...  

<p>The Totten Glacier in East Antarctica is of major climate interest because of the large fluctuation of its grounding line and of its potential vulnerability to climate change. The ocean above the continental shelf in front of the Totten ice shelf exhibits large extents of landfast sea ice with low interannual variability. Landfast sea ice is mostly not or sole crudely represented in current climate models. These models are potentially omitting or misrepresenting important effects related to this type of sea ice, such as its influence on coastal polynya locations. Yet, the impact of the landfast sea<br>ice on the ocean – ice shelf interactions is poorly understood. Using a series of high-resolution, regional NEMO-LIM-based experiments including an<br>explicit treatment of ocean – ice shelf interactions over the years 2001-2010, we simulate a realistic landfast sea ice extent in the area of Totten Glacier<br>through a combination of a sea ice tensile strength parameterisation and a grounded iceberg representation. We show that the presence of landfast sea<br>ice impacts seriously both the location of coastal polynyas and the ocean mixed layer depth along the coast, in addition to favouring the intrusion of<br>mixed Circumpolar Deep Water into the ice shelf cavities. Depending on the local bathymetry and the landfast sea ice distribution, landfast sea ice affects ice shelf cavities in different ways, either by increasing the ice melt (+28% for the Moscow University ice shelf) or by reducing its seasonal cycle<br>(+10% in March-May for the Totten ice shelf). This highlights the importance of including an accurate landfast sea ice representation in regional and<br>eventually global climate models</p>


Sign in / Sign up

Export Citation Format

Share Document