physical controls
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 32)

H-INDEX

36
(FIVE YEARS 4)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 11
Author(s):  
Martin A. Briggs ◽  
Kevin E. Jackson ◽  
Fiona Liu ◽  
Eric M. Moore ◽  
Alaina Bisson ◽  
...  

Groundwater discharge to rivers takes many forms, including preferential groundwater discharge points (PDPs) along riverbanks that are exposed at low flows, with multi-scale impacts on aquatic habitat and water quality. The physical controls on the spatial distribution of PDPs along riverbanks are not well-defined, rendering their prediction and representation in models challenging. To investigate the local riverbank sediment controls on PDP occurrence, we tested drone-based and handheld thermal infrared to efficiently map PDP locations along two mainstem rivers. Early in the study, we found drone imaging was better suited to locating tributary and stormwater inflows, which created relatively large water surface thermal anomalies in winter, compared to PDPs that often occurred at the sub-meter scale and beneath riparian tree canopy. Therefore, we primarily used handheld thermal infrared imaging from watercraft to map PDPs and larger seepage faces along 12-km of the fifth-order Housatonic River in Massachusetts, USA and 26-km of the Farmington River in Connecticut, USA. Overall, we mapped 31 riverbank PDPs along the Housatonic reach that meanders through lower permeability soils, and 104 PDPs along the Farmington reach that cuts through sandier sediments. Riverbank soil parameters extracted at PDP locations from the Soil Survey Geographic (SSURGO) database did not differ substantially from average bank soils along either reach, although the Farmington riverbank soils were on average 5× more permeable than Housatonic riverbank soils, likely contributing to the higher observed prevalence of PDPs. Dissolved oxygen measured in discharge water at these same PDPs varied widely, but showed no relation to measured sand, clay, or organic matter content in surficial soils indicating a lack of substantial near-surface aerobic reaction. The PDP locations were investigated for the presence of secondary bank structures, and commonly co-occurred with riparian tree root masses indicating the importance of localized physical controls on the spatial distribution of riverbank PDPs.


2021 ◽  
Author(s):  
Kido Tani ◽  
Nobuyuki Umezu

We propose a gesture-based interface to control a smart home. Our system replaces existing physical controls with our temporal sound commands using accelerometer. In our preliminary experiments, we recorded the sounds generated by six different gestures (knocking the desk, mouse clicking, and clapping) and converted them into spectrogram images. Classification learning was performed on these images using a CNN. Due to the difference between the microphones used, the classification results are not successful for most of the data. We then recorded acceleration values, instead of sounds, using a smart watch. 5 types of motions were performed in our experiments to execute activity classification on these acceleration data using a machine learning library named Core ML provided by Apple Inc.. These results still have much room to be improved.


2021 ◽  
Vol 15 (7) ◽  
pp. 3255-3278
Author(s):  
Hannah R. Field ◽  
William H. Armstrong ◽  
Matthias Huss

Abstract. Lakes in contact with glacier margins can impact glacier evolution as well as the downstream biophysical systems, flood hazard, and water resources. Recent work suggests positive feedbacks between glacier wastage and ice-marginal lake evolution, although precise physical controls are not well understood. Here, we quantify ice-marginal lake area change in understudied northwestern North America from 1984–2018 and investigate climatic, topographic, and glaciological influences on lake area change. We delineate time series of sampled lake perimeters (n=107 lakes) and find that regional lake area has increased 58 % in aggregate, with individual proglacial lakes growing by 1.28 km2 (125 %) and ice-dammed lakes shrinking by 0.04 km2 (−15 %) on average. A statistical investigation of climate reanalysis data suggests that changes in summer temperature and winter precipitation exert minimal direct influence on lake area change. Utilizing existing datasets of observed and modeled glacial characteristics, we find that large, wide glaciers with thick lake-adjacent ice are associated with the fastest rate of lake area change, particularly where they have been undergoing rapid mass loss in recent times. We observe a dichotomy in which large, low-elevation coastal proglacial lakes have changed most in absolute terms, while small, interior lakes at high elevation have changed most in relative terms. Generally, the fastest-changing lakes have not experienced the most dramatic temperature or precipitation change, nor are they associated with the highest rates of glacier mass loss. Our work suggests that, while climatic and glaciological factors must play some role in determining lake area change, the influence of a lake's specific geometry and topographic setting overrides these external controls.


Author(s):  
Robert S. Pickart ◽  
Michael A. Spall ◽  
Peigen Lin ◽  
Frank Bahr ◽  
Leah T. McRaven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document