scholarly journals Reliable Early Breast Cancer Detection using Artificial Neural Network for Small Data Set

2021 ◽  
Vol 1755 (1) ◽  
pp. 012037
Author(s):  
V. Vijayasarveswari ◽  
M. Jusoh ◽  
T. Sabapathy ◽  
R.A.A. Raof ◽  
S. Khatun ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Oded Medina ◽  
Roi Yozevitch ◽  
Nir Shvalb

It is often hard to relate the sensor’s electrical output to the physical scenario when a multidimensional measurement is of interest. An artificial neural network may be a solution. Nevertheless, if the training data set is extracted from a real experimental setup, it can become unreachable in terms of time resources. The same issue arises when the physical measurement is expected to extend across a wide range of values. This paper presents a novel method for overcoming the long training time in a physical experiment set up by bootstrapping a relatively small data set for generating a synthetic data set which can be used for training an artificial neural network. Such a method can be applied to various measurement systems that yield sensor output which combines simultaneous occurrences or wide-range values of physical phenomena of interest. We discuss to which systems our method may be applied. We exemplify our results on three study cases: a seismic sensor array, a linear array of strain gauges, and an optical sensor array. We present the experimental process, its results, and the resulting accuracies.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


Author(s):  
W. Abdul Hameed ◽  
Anuradha D. ◽  
Kaspar S.

Breast tumor is a common problem in gynecology. A reliable test for preoperative discrimination between benign and malignant breast tumor is highly helpful for clinicians in culling the malignant cells through felicitous treatment for patients. This paper is carried out to generate and estimate both logistic regression technique and Artificial Neural Network (ANN) technique to predict the malignancy of breast tumor, utilizing Wisconsin Diagnosis Breast Cancer Database (WDBC). Our aim in this Paper is: (i) to compare the diagnostic performance of both methods in distinguishing between malignant and benign patterns, (ii) to truncate the number of benign cases sent for biopsy utilizing the best model as an auxiliary implement, and (iii) to authenticate the capability of each model to recognize incipient cases as an expert system.


Sign in / Sign up

Export Citation Format

Share Document