scholarly journals The development of Lyapunov direct method in application to synchronization systems

2021 ◽  
Vol 1864 (1) ◽  
pp. 012065
Author(s):  
Vera B Smirnova ◽  
Anton V Proskurnikov ◽  
Natalia V Utina
2014 ◽  
Vol 47 (3) ◽  
pp. 9087-9092 ◽  
Author(s):  
Igor B. Yadykin ◽  
Dmitry E. Kataev ◽  
Alexey B. Iskakov ◽  
Vladislav K. Shipilov

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


2020 ◽  
Vol 102 (3) ◽  
pp. 1651-1665
Author(s):  
Kanthimathi Raman ◽  
Kamala Jeyaraman ◽  
Saad Mekhilef ◽  
Lincy Grace Alexander

2019 ◽  
Vol 25 (10) ◽  
pp. 1614-1628 ◽  
Author(s):  
Xingpeng Zhang ◽  
Dong Li ◽  
Xiaohong Zhang

In this paper, a new lemma is proposed to study the stability of a fractional order complex chaotic system without dividing the complex number into real and imaginary parts. The proving process of the new lemma combines the fundamental properties of the complex field and the fractional order extension of the Lyapunov direct method. It extends the fractional order extension of the Lyapunov direct method from the real number field to the complex number field. Based on the new lemma, we propose a new impulsive synchronization scheme for fractional order complex chaotic systems. The numerical simulation results also show the validity of our conclusion.


2017 ◽  
Vol 31 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Jiyang Chen ◽  
Chuandong Li ◽  
Tingwen Huang ◽  
Xujun Yang

In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Ping Zhou ◽  
Rongji Bai ◽  
Hao Cai

Based on an integer-order Brushless DC motors (IO-BLDCM) system, we give a fractional-order Brushless DC motors (FO-BLDCM) system in this paper. There exists a chaotic attractor for fractional-order0.95<q≤1in the FO-BLDCM system. Furthermore, using the Lyapunov direct method for fractional-order system, a control scheme is proposed to stabilize the FO-BLDCM chaotic system in the sense of Lyapunov. Numerical simulation shows that the control scheme in this paper is valid for the FO-BLDCM chaotic system.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sung Kyu Choi ◽  
Bowon Kang ◽  
Namjip Koo

We introduce the notion ofh-stability for fractional differential systems. Then we investigate the boundedness andh-stability of solutions of Caputo fractional differential systems by using fractional comparison principle and fractional Lyapunov direct method. Furthermore, we give examples to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document