scholarly journals Discrete wavelet based estimator for the Hurst parameter of multivariate fractional Brownian motion

2021 ◽  
Vol 1879 (3) ◽  
pp. 032033
Author(s):  
Munaf Yousif Hmood ◽  
Amjad Hibtallah Hamza
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


2020 ◽  
Vol 28 (4) ◽  
pp. 291-306
Author(s):  
Tayeb Bouaziz ◽  
Adel Chala

AbstractWe consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter {H\in(\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.


2019 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Eric Djeutcha ◽  
Didier Alain Njamen Njomen ◽  
Louis-Aimé Fono

This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.


2014 ◽  
Vol 22 (4) ◽  
Author(s):  
Zhi Li ◽  
Jiaowan Luo

AbstractIn this paper, Harnack inequalities are established for stochastic functional differential equations driven by fractional Brownian motion with Hurst parameter


Author(s):  
Lihong Guo ◽  
Shaoyun Shi ◽  
YangQuan Chen

Abstract In this article, we use the renormalization group method to study the approximate solution of stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H∈12,1. We derive a related reduced system, which we use to construct the separate scale approximation solutions. It is shown that the approximate solutions remain valid with high probability on large time scales. We also expect that our general approach can be applied to the fields of physics, finance, and engineering, etc.


Sign in / Sign up

Export Citation Format

Share Document