Renormalization Group Method for Singular Perturbed Systems Driven by Fractional Brownian Motion

Author(s):  
Lihong Guo ◽  
Shaoyun Shi ◽  
YangQuan Chen

Abstract In this article, we use the renormalization group method to study the approximate solution of stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H∈12,1. We derive a related reduced system, which we use to construct the separate scale approximation solutions. It is shown that the approximate solutions remain valid with high probability on large time scales. We also expect that our general approach can be applied to the fields of physics, finance, and engineering, etc.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


Author(s):  
Y. Meurice ◽  
R. Perry ◽  
S.-W. Tsai

The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.


2020 ◽  
Vol 28 (4) ◽  
pp. 291-306
Author(s):  
Tayeb Bouaziz ◽  
Adel Chala

AbstractWe consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter {H\in(\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.


Sign in / Sign up

Export Citation Format

Share Document