scholarly journals Analysis of the geometric parameters influence on the labyrinth seals performance

2021 ◽  
Vol 1925 (1) ◽  
pp. 012075
Author(s):  
I Androsovich ◽  
D Borovikov ◽  
M Siluyanova
2021 ◽  
Vol 323 ◽  
pp. 00015
Author(s):  
Damian Joachimiak ◽  
Piotr Krzyślak

This paper includes results of experimental research and CFD calculations concerning gas flow in segments of straight through labyrinth seals of fixed length and varying number of teeth. Relation between the number of teeth and the leakage is analyzed in this paper. Authors determined the range of teeth number for which the minimum leakage was achieved. They focused particularly on the analysis of geometry with maximum number of teeth which fell within the range of the minimum leakage. For this geometry they examined the relation between the thickness of the teeth and the distribution of gas pressure and velocity along the seal and the leakage size. Data presented in this paper indicate that the teeth thickness has a significant impact on the flow parameters.


Author(s):  
Manuel Hildebrandt ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer

Because of the superior sealing characteristics compared to labyrinth seals, brush seals found an increased spread in turbomachinery in recent years. Their outstanding sealing performance results mainly from their flexibility. Thus, a very small gap between the rotor and bristle package can be obtained without running the risk of severe detrimental deterioration in case of rubbing. Rubbing between rotor and seal during operation might occur as a result of e.g., an unequal thermal expansion of the rotor and stator or a rotor elongation due to centrifugal forces or maneuver forces. Thanks to the flexible structure of the brush seal the contact forces during a rubbing event are reduced; however, the frictional heat input can still be considerable. Particularly, in aircraft engines with their thin and lightweight rotor structures, the permissible material stresses can easily be exceeded by an increased heat input and thus harm the engine's integrity. The geometry of the seal has a decisive influence on the resulting contact forces and consequently the heat input. The complex interactions between the geometric parameters of the seal and the heat input and leakage characteristics are not yet fully understood. This paper presents the investigation of the influence of the geometric parameters of a brush seal on the heat input into the rotor and the leakage behavior. Two seals with different packing densities were tested under relevant engine conditions with pressure differences ranging from 1 to 7 bar, relative surface speeds ranging from 30 to 180 m/s, and radial overlaps ranging from 0.1 to 0.4 mm. The transient temperature rise during the rub event was recorded with 24 thermocouples in close proximity to the rub contact embedded in the rotor structure. By comparing the temperature curves with the results of a thermal finite element (FE) analysis of the rotor the heat input into the rotor was calculated iteratively. It could be shown that the packing density has a decisive influence on the overall operating behavior of a brush seal. Furthermore, results for the heat flux distribution between seal and rotor are shown.


Author(s):  
Dean A. Handley ◽  
Lanping A. Sung ◽  
Shu Chien

RBC agglutination by lectins represents an interactive balance between the attractive (bridging) force due to lectin binding on cell surfaces and disaggregating forces, such as membrane stiffness and electrostatic charge repulsion (1). During agglutination, critical geometric parameters of cell contour and intercellular distance reflect the magnitude of these interactive forces and the size of the bridging macromolecule (2). Valid ultrastructural measurements of these geometric parameters from agglutinated RBC's require preservation with minimal cell distortion. As chemical fixation may adversely influence RBC geometric properties (3), we used chemical fixation and cryofixation (rapid freezing followed by freeze-substitution) as a comparative approach to examine these parameters from RBC agglutinated with Ulex I lectin.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


2013 ◽  
Vol 8 (2) ◽  
pp. 55-66 ◽  
Author(s):  
Georgina Tóth ◽  
Ágota Drégelyi-Kiss ◽  
Béla Palásti-Kovács
Keyword(s):  

2019 ◽  
Vol 9 (2) ◽  
pp. 46
Author(s):  
PATEL S. ISHA ◽  
MOHAN RAO B. D. V. CHANDRA ◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document