scholarly journals Wellbore characteristics of air drilling with hammer in thick conglomerate and its influence on hole deviation

2021 ◽  
Vol 1986 (1) ◽  
pp. 012055
Author(s):  
Feng Chen ◽  
Yonghao Huo ◽  
Haiyi Zhao ◽  
Wenchang Wang ◽  
Qinfeng Di ◽  
...  
Keyword(s):  
1986 ◽  
Vol 1 (05) ◽  
pp. 377-382 ◽  
Author(s):  
Maxwell C. Whiteley ◽  
William P. England

1963 ◽  
Vol 3 (01) ◽  
pp. 85-94 ◽  
Author(s):  
P.R. Paslay ◽  
J.B. Cheatham

Abstract Rock stresses and steady-state flow rates induced by the pressure gradient associated with the flow of formation fluid into a borehole have been analytically determined for a permeable, elastic material saturated with an incompressible fluid. In this analysis, the material properties and loading are considered to he symmetric about the axis of the borehole and independent of axial position. For Case I the material is assumed to have uniform permeability in the radial direction, whereas for Case II the permeability is assumed to have been reduced in a localized region adjacent to the hole by either normal well completion and production operations or deliberate plugging during air drilling.Results of a numerical example indicate that, in the absence of plugging, the rock shear strength must be approximately two-thirds the formation fluid pressure in order to prevent rock failure. The required rock strength is high for small radial zones of plugging and decreases as the region of reduced permeability becomes larger; however, a depth of plugging can be reached beyond which there is no real gain in strength, although the flow rate can be further reduced. Introduction During normal production of oil from a well, it is often desirable to increase the production rate of the formation fluid by increasing the pressure gradient through the formation adjacent to the borehole. Depending upon the magnitude of this pressure gradient and strength of the rock material, this production-rate increase can cause sloughing of the hole wall. In many cases, the production-rate increase can result in excessive sand production, increased wear of production equipment, lost production time and expensive workover jobs.In addition, the phenomenon of increased rock bit penetration rate with the use of a gaseous instead of a liquid drilling fluid has been observed in oilfield drilling operations and experimentally demonstrated by various investigators for several years. The improvement obtained by employing this technique can be quite significant and offers a promising method for reducing drilling costs. However, air drilling is currently limited to geographical locations where high-capacity water-bearing formations are not encountered. This limitation has prevented widespread adoption of air-drilling techniques, because the water influx into the borehole interferes with efficient removal of the drilling cuttings and usually results in a condition such that the bit becomes "balled-up" or stuck in the hole.In an attempt to remove the water-intrusion limitation from air drilling, various chemical and mechanical water shut-off methods have been proposed. Goodwin and Teplitz suggested one such proposal whereby the permeability of the water - bearing rock structure was reduced in the vicinity of the borehole. Although the development of a shut-off method based upon this approach would certainly be welcomed by the oil industry, it is conceivable that, under certain conditions of the pressure gradient, strength of the rock material and depth of the modified permeability zone, a stress field can be created that will result in an unstable hole.As part of their study, an analytical solution is given for stresses in an idealized model of a hole and the surrounding rock material. The purpose of the present study is to extend the analysis of Goodwin and Teplitz to gain more insight into the details and consequences of excessive production rates and formation water shut-off. In particular, simplified models of these problems have been analytically examined, which makes possible the evaluation of the type of stress fields that can be anticipated as a result of these production and drilling practices.Both problems solved concern the determination of the steady-state volume flow rate of the formation fluid and the resulting steady-state stress and displacement distribution in a hollow, cylindrical configuration. The cylinder of Case I, corresponding to the production-rate problem, consists of a material with a constant permeability from the inside surface to the outside surface; the cylinder of Case II, corresponding to the water shut-off problem, consists of a material with a constant permeability from the inside surface to an intermediate concentric cylindrical surface and a second constant permeability from the intermediate surface to the outside surface. SPEJ P. 85^


2012 ◽  
Vol 508 ◽  
pp. 267-270
Author(s):  
Cun Lai Zhang ◽  
Qi Bin Xin

Air drilling technology has been widely used in the oil and gas exploration, coal, geothermal, geological exploration, nuclear industry and other fields due to its high drilling rate and low cost. However, the design of the pneumatic conveying system for the mineral detritus is still largely based on empiricism. The paper was set in the background of gas drilling, mainly studied the gas-solids two-phase flow characteristics in 90 degree bent annular pipe and backward-facing step of an annular pipe, which are very important parts of air drilling. They refer to the bent part and backward-facing step of an annular channel formed by the drill pipe and the borehole wall. A detailed numerical simulation and experimental studies were carried out for the flow structure and pressure losses of gas-solid two-phase in the annular pipe of gas drilling. Since a unified theory has not been developed for the two-phase flow in annular pipe, a lot of experimental work should be conducted. In the experimental research, the paper independently designed and built an annular pipe pneumatic conveying system with 90 degree bend and backward-facing step, including designing material screw feeder, material receiving hopper, pipeline, control system, data acquisition system, and etc. As known, many parameters, such as gas velocity, diameter and density of the particle, and solids loading ratio, can influence the conveying process. How these primordial influence factors act on the pressure losses of two-phase flow in annular pipe was analyzed in this paper. In the numerical simulation research, turbulent two-phase flow calculations were performed with a commercial CFD computer code referred to as FLUENT to study the gas-solid two phase flow in the sections of backward-facing step and 90 degree bent pipe respectively by using Euler-Lagrange method. The RNG κ-ε model and stochastic tracking were involved in the calculation of turbulence dispersion of two phases. The discrete phase model was performed for the solid phase. In the end, the numerical study 3-D results were translated to 1-D results using the standard averaging transformation to compare with experimental results. Predicted results obtained for pressure drop and velocity variations in full developed flows in the cases examined are in good qualitative agreement and are not in quantitative agreement with experimental data. The deviations between the simulations and experimental data lie in the range of 20%-30%. These results suggest commercial CFD codes such as FLUENT can be used productively for investigations into gas-solid two-phase flow phenomena and as an aid in pneumatic conveying design. The studies of the two-phase flow characteristics in the paper will contribute to reliable determination of the optimal condition of pneumatic conveying in gas drilling.


1967 ◽  
Author(s):  
Roger J. Schoeppel ◽  
Ashok R. Sapre
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document