Rock Stresses Induced by Flow of Fluids into Boreholes

1963 ◽  
Vol 3 (01) ◽  
pp. 85-94 ◽  
Author(s):  
P.R. Paslay ◽  
J.B. Cheatham

Abstract Rock stresses and steady-state flow rates induced by the pressure gradient associated with the flow of formation fluid into a borehole have been analytically determined for a permeable, elastic material saturated with an incompressible fluid. In this analysis, the material properties and loading are considered to he symmetric about the axis of the borehole and independent of axial position. For Case I the material is assumed to have uniform permeability in the radial direction, whereas for Case II the permeability is assumed to have been reduced in a localized region adjacent to the hole by either normal well completion and production operations or deliberate plugging during air drilling.Results of a numerical example indicate that, in the absence of plugging, the rock shear strength must be approximately two-thirds the formation fluid pressure in order to prevent rock failure. The required rock strength is high for small radial zones of plugging and decreases as the region of reduced permeability becomes larger; however, a depth of plugging can be reached beyond which there is no real gain in strength, although the flow rate can be further reduced. Introduction During normal production of oil from a well, it is often desirable to increase the production rate of the formation fluid by increasing the pressure gradient through the formation adjacent to the borehole. Depending upon the magnitude of this pressure gradient and strength of the rock material, this production-rate increase can cause sloughing of the hole wall. In many cases, the production-rate increase can result in excessive sand production, increased wear of production equipment, lost production time and expensive workover jobs.In addition, the phenomenon of increased rock bit penetration rate with the use of a gaseous instead of a liquid drilling fluid has been observed in oilfield drilling operations and experimentally demonstrated by various investigators for several years. The improvement obtained by employing this technique can be quite significant and offers a promising method for reducing drilling costs. However, air drilling is currently limited to geographical locations where high-capacity water-bearing formations are not encountered. This limitation has prevented widespread adoption of air-drilling techniques, because the water influx into the borehole interferes with efficient removal of the drilling cuttings and usually results in a condition such that the bit becomes "balled-up" or stuck in the hole.In an attempt to remove the water-intrusion limitation from air drilling, various chemical and mechanical water shut-off methods have been proposed. Goodwin and Teplitz suggested one such proposal whereby the permeability of the water - bearing rock structure was reduced in the vicinity of the borehole. Although the development of a shut-off method based upon this approach would certainly be welcomed by the oil industry, it is conceivable that, under certain conditions of the pressure gradient, strength of the rock material and depth of the modified permeability zone, a stress field can be created that will result in an unstable hole.As part of their study, an analytical solution is given for stresses in an idealized model of a hole and the surrounding rock material. The purpose of the present study is to extend the analysis of Goodwin and Teplitz to gain more insight into the details and consequences of excessive production rates and formation water shut-off. In particular, simplified models of these problems have been analytically examined, which makes possible the evaluation of the type of stress fields that can be anticipated as a result of these production and drilling practices.Both problems solved concern the determination of the steady-state volume flow rate of the formation fluid and the resulting steady-state stress and displacement distribution in a hollow, cylindrical configuration. The cylinder of Case I, corresponding to the production-rate problem, consists of a material with a constant permeability from the inside surface to the outside surface; the cylinder of Case II, corresponding to the water shut-off problem, consists of a material with a constant permeability from the inside surface to an intermediate concentric cylindrical surface and a second constant permeability from the intermediate surface to the outside surface. SPEJ P. 85^

2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


2021 ◽  
Author(s):  
Fırat Kıyıcı ◽  
Mustafa Perçin

Abstract This experimental study investigates the effect of confinement ratio (CR) on the flow field of a counter-rotating radial-radial swirler. Two-dimensional two-component (2D2C) particle image velocimetry (PIV) measurements are performed at the mid-plane of the jet. Four different confinement ratios (i.e., 10.4, 23.4, 41.6 and unconfined) are considered at a swirl number of 1.2. The results reveal the presence of a central toroidal recirculation zone (CTRZ) in all cases extending inside the jet which indicates the existence of an adverse pressure gradient. For the unconfined swirling jet, the recirculation zone is small in size and exists at the exit of the jet. For the CR = 41.6 case, on the other hand, there exist two separate recirculation zones with the first one being similar to the unconfined case in terms of size and axial position, while the second one being larger in size and positioned at a more downstream location. Variation of the axial velocity along the centerline of the jet for this case indicates the presence of an adverse pressure gradient only in the close-jet region correlated with the first recirculation zone. For the smaller CR values, a single massive CTRZ emerges. This leads to increase in the expansion angle of the swirling jet as the CR decreases. Correspondingly, the radial velocity at the jet exit increases. For the confined cases with a single recirculation zone, the length and the width to cross-section ratio increase with the CR. On the other hand, the ratio of the reverse flow rate to total mass flow rate decreases with increasing CR values.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1865-1872 ◽  
Author(s):  
Toshiya OHTSUKI ◽  
Yoshikazu TAKEMOTO ◽  
Tatsuo HATA ◽  
Shigeki KAWAI ◽  
Akihisa HAYASHI

The Molecular Dynamics technique is used to investigate size segregation by shaking in cohesionless granular materials. Temporal evolution of the height h of the tagged particle with different size and mass is measured for various values of the particle radius and specific gravity. It becomes evident that h approaches the steady state value h∞ independent of initial positions. There exists a threshold of the specific gravity of the particle. Below the threshold, h∞ is an increasing function of the particle size, whereas above it, h∞ decreases with increasing the particle radius. The relaxation time τ towards the steady state is calculated and its dependence on the particle radius and specific gravity is clarified. The pressure gradient of pure systems is also measured and turned out to be almost constant. This suggests that the buoyancy force due to the pressure gradient is not responsible to h∞.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


2014 ◽  
Vol 493 ◽  
pp. 145-150 ◽  
Author(s):  
Daru Sugati ◽  
Indarto ◽  
Purnomo ◽  
Sutrisno

Liquid gas ejector uses liquid as the motive fluid and gas as the entrained fluid. The presence of gas in the liquid reduces the performance of the ejector, especially the diffuser. To observe the effect of entrained gas on the diffuser performance, a series of experiment was conducted.In this research, the motive flow rate was varied from 1.52 to 2.02 l/s and the entrained rate from 0.118 l/s to 0.944 l/s. Its effects on the pressure profile and pressure recovery were observed. If the entrained rate increase, the pressure of the throat upstream, as well as downstream, increase. In the diffuser, longer distance is needed for the pressure to reach its final value. Pressure recovery is mainly affected by void fraction. The higher the void fraction the lower the pressure recovery coefficient


Author(s):  
Tomonari KAWAI ◽  
Katsuhiro ICHIYANAGI ◽  
Takuo KOYASU ◽  
Kazuto YUKITA ◽  
Yasuyuki GOTO

2018 ◽  
Vol 8 (9) ◽  
pp. 1670 ◽  
Author(s):  
Wei Zhong ◽  
Xiang Ji ◽  
Chong Li ◽  
Jiwen Fang ◽  
Fanghua Liu

Sintered metal porous media are widely used in a broad range of industrial equipment. Generally, the flow properties in porous media are represented by an incompressible Darcy‒Forchheimer regime. This study uses a modified Forchheimer equation to represent the flow rate characteristics, which are then experimentally and theoretically investigated using a few samples of sintered metal porous media. The traditional steady-state method has a long testing time and considerable air consumption. With this in mind, a discharge method based on an isothermal chamber filled with copper wires is proposed to simultaneously determine the permeability and inertial coefficient. The flow rate discharged from the isothermal chamber is calculated by differentiating the measured pressure, and a paired dataset of pressure difference and flow rate is available. The theoretical representations of pressure difference versus flow rate show good agreement with the steady-state results. Finally, the volume limit of the isothermal chamber is addressed to ensure sufficient accuracy.


Author(s):  
Xiaofeng Yang ◽  
Zhaohui Chen ◽  
Tang-Wei Kuo

Steady-state port flow simulations were carried out with a commercial three dimensional (3D) Computational Fluid Dynamics (CFD) code using Cartesian mesh with cut cells to study the prediction accuracy. The accuracy is assessed by comparing predicted and measured mass-flow rate and swirl and tumble torques at various valve lifts using different boundary condition setup and mesh topology relative to port orientation. The measured data is taken from standard steady-state flow bench tests of a production intake port. The predicted mass-flow rates agree to within 1% with the measured data between the intermediate and high valve lifts. At low valve lifts, slight over prediction in mass-flow rate can be observed. The predicted swirl and tumble torques are within 25% of the flow bench measurements. Several meshing parameters were examined in this study. These include: inlet plenum shape and outlet plenum/extension size, embedded sphere with varying minimum mesh size, finer meshes on port and valve surface, orientation of valve and port centerline relative to the mesh lines. For all model orientations examined, only the mesh topology with the valve axis aligned closely with the mesh lines can capture the mass-flow rate drop for very high valve lifts due to flow separation. This study further demonstrated that it is possible to perform 3D CFD flow analyses to adequately simulate steady-state flow bench tests.


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
R. L. J. Fernandes ◽  
B. A. Fleck ◽  
T. R. Heidrick ◽  
L. Torres ◽  
M. G. Rodriguez

Experimental investigation of drag reduction in vertical two-phase annular flow is presented. The work is a feasibility test for applying drag reducing additives (DRAs) in high production-rate gas-condensate wells where friction in the production tubing limits the production rate. The DRAs are intended to reduce the overall pressure gradient and thereby increase the production rate. Since such wells typically operate in the annular-entrained flow regime, the gas and liquid velocities were chosen such that the experiments were in a vertical two-phase annular flow. The drag reducers had two main effects on the flow. As expected, they reduced the frictional component of the pressure gradient by up to 74%. However, they also resulted in a significant increase in the liquid holdup by up to 27%. This phenomenon is identified as “DRA-induced flooding.” Since the flow was vertical, the increase in the liquid holdup increased the hydrostatic component of the pressure gradient by up to 25%, offsetting some of reduction in the frictional component of the pressure gradient. The DRA-induced flooding was most pronounced at the lowest gas velocities. However, the results show that in the annular flow the net effect will generally be a reduction in the overall pressure gradient by up to 82%. The findings here help to establish an envelope of operations for the application of multiphase drag reduction in vertical flows and indicate the conditions where a significant net reduction of the pressure gradient may be expected.


Sign in / Sign up

Export Citation Format

Share Document