scholarly journals General Calculation Method of Normal Stress on Cross Section of Combined Tension (Compression) Bending Deformation

2021 ◽  
Vol 2012 (1) ◽  
pp. 012012
Author(s):  
Mengmeng Wu ◽  
Shaohong Yang ◽  
Hui Deng
2021 ◽  
Vol 47 ◽  
Author(s):  
Vytautas Kleiza ◽  
Jonas Kleiza

This paper presents stress calculationmethod of bending multilayer structural element when bending moment acts in the planes that do not coincident with principal planes, and cross section is symmetric or asymmetric. Carrying the computation of occurring stress values in multilayer beam layers it is necessary to identify coordinates of cross-section stiffness centre, direction of principal axes, and coordinates of specific points regarding principal axes. Having this information and equation which is valid for stress calculation of bending multilayer beams it is possible to identify normal stress values at any point of the beam cross section under skew bending. It is deduced that stress values and the nature of their changes are influenced by the shape of beam cross-section, its asymmetry degree, and the direction of appliedmoment.


2020 ◽  
Vol 15 (3) ◽  
pp. 150-161
Author(s):  
Antal Gábor Erdős ◽  
Károly Jármai

In this article, the investigation of a press machine with 30 tons of pressing weight is presented. The beam of this machine is an I-beam, which has an open cross-section. It is known that this version of cross-section is sensitive to torsional stress. The stress from warping torsion is normal stress, so the opened cross-section is more sensitive to this type of stress. The bimoment that causes normal stress can also be very high, so dealing with this stress is very important.


1987 ◽  
Vol 20 (8) ◽  
pp. 1085-1087 ◽  
Author(s):  
T Taniguchi ◽  
M Suzuki ◽  
K Kawamura ◽  
F Noto ◽  
H Tagashira

2004 ◽  
Vol 34 (4) ◽  
pp. 817-828 ◽  
Author(s):  
Albert Saravi ◽  
C Kevin Lyons

In this study a finite element model of a back spar system was developed with three guylines opposing the skyline strap tension. In this paper the allowable skyline strap tension is the tension in the skyline strap that results in the maximum normal stress on a transverse cross section of the tree being equal to an assumed allowable stress. An iterative routine was developed to find the allowable skyline strap tension, and this routine was found to converge rapidly from initial values that were below and above the allowable skyline strap tension. Two algorithms were developed for finding the maximum normal stress on a transverse cross section of a tree, method 1 and method 2. If the plane that the tree displaced in was known a priori, then method 2 could be used, and it was found to be less sensitive to mesh coarseness. If the plane that the tree displaced in was not known a priori, then method 1 had to be used with a less coarse mesh. It was found that the stress concentrations due to simplified cable connections were not significant for rigging configurations that allowed a larger rigging point displacement. The rigging configurations that allowed larger rigging point displacements have stress fields that are dominated by bending, while for rigging configurations that allow only small rigging point displacements, the stress fields are dominated by axial compression.


Author(s):  
P Hosseini-Tehrani ◽  
S Pirmohammad ◽  
M Golmohammadi

In this work, several antisymmetric tapered tubes with an inner stiffener under axial and oblique loading are studied and optimum dimensions of the tapered tube are derived from a crashworthiness point of view. The importance of detecting these dimensions is optimizing the weight while the crashworthiness of tube is not damaged. By using an internal stiffener, crashworthiness is improved against oblique loads, and the sensitivity of tubes with respect to oblique loads and bending deformation is diminished. The numerical models have been developed using the explicit finite element code LS-DYNA. The crashworthiness of the optimized tapered tube is compared with that of an octagonal-cross-section tube which is known as the best energy absorber model in the literature. It is shown that an optimized tapered tube has an average of 29.3 per cent less crushing displacement in comparison with octagonal-section tube when both tubes have the same weights and the same peaks of crushing load. Finally, the orientation of loading is changed and the best orientation is proposed.


2020 ◽  
Vol 145 ◽  
pp. 107553
Author(s):  
Zeguang Li ◽  
Jun Sun ◽  
Chunlin Wei ◽  
Zhe Sui ◽  
Xiaoye Qian

Sign in / Sign up

Export Citation Format

Share Document