normal stress difference
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Paolo Sartori ◽  
Davide Ferraro ◽  
Marco Dassie ◽  
Alessio Meggiolaro ◽  
Daniele Filippi ◽  
...  

Abstract The introduction of slippery lubricated surfaces allows the investigation of the flow of highly viscous solutions which otherwise will hardly move on standard solid surfaces. Here we present the study of the gravity induced motion of small viscoelastic drops deposited on inclined lubricated surfaces. The viscoelastic fluids exhibit shear thinning and, more importantly, a significant first normal stress difference N1. Despite the homogeneity of the surface and of the fluids, drops of sufficiently high N1 move down with an oscillating instantaneous speed whose frequency is found to be directly proportional to the average speed and inversely to the drop volume. The oscillatory motion is caused by the formation of a bulge at the drop rear that starts rolling around the moving drop.


2021 ◽  
Vol 881 ◽  
pp. 39-44
Author(s):  
Zhong Ren

In this paper, the effect of traction speed on the four-lumen plastic micro-catheter (FLPMC) was numerically studied. Moreover, the numerical simulations of FLPMC based on two kinds of extrusions, i.e., traditional extrusion and gas-assisted extrusion were performed and compared. Numerical results show that with the increase of traction speed, the sizes of FLPMC for both extrusions all decrease. The sizes of FLPMC based on gas-assisted extrusion are sightly larger than those of the traditional extrusion. To ascertain the reasons, the flow velocities, pressure, shear stress and first normal stress difference distributions of melt based on both extrusions under two different traction speeds were obtained and compared. Results show that with the increase of traction speed under the fixed volume inlet flow rate, the radial flow velocities of melt at the outlet of die decrease but the axial flow velocities increase, which results in the decrease of the die swell at the outlet of die and the size shrinkage of exit face for the FLPMC based on both extrusions. However, for the gas-assisted extrusion, the axial velocities are larger, and the pressure, shear stress and first normal stress difference are far less than those of traditional extrusion, which results in the larger unit volume flow rate, then the sizes of cross-section face are larger than those of the traditional extrusion.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Chaimongkol Saengow ◽  
Alan Jeffrey Giacomin ◽  
Andrea Stephanie Dimitrov

Abstract This work analyzes normal stress difference responses in blood tested in unidirectional large-amplitude oscillatory shear flow (udLAOS), a novel rheological test, designed for human blood. udLAOS mimics the pulsatile flow in veins and arteries, in the sense that it never reverses, and yet also nearly stops once per heartbeat. As for our continuum fluid model, we choose the Oldroyd 8-constant framework for its rich diversity of popular constitutive equations, including the corotational Jeffreys fluid. This work arrives at exact solutions for normal stress differences from the corotational Jeffreys fluid in udLAOS. We discover fractional harmonics comprising the transient part of the normal stress difference responses, and both integer and fractional harmonics, the alternant part. By fractional, we mean that these occur at frequencies other than integer multiples of the superposed oscillation frequency. More generally, predictions from the Oldroyd 8-constant framework are explored by means of the finite difference method. Finally, the generalized versions of both the Oldroyd 8-constant framework and the corotational Jeffreys fluid are employed to predict the nonlinear normal stress responses for the model parameters fitted to udLAOS measurements from three very different donors, all healthy. From our predictions, we are led to expect less variation in normal stress differences in udLAOS from healthy donor to donor, than for the corresponding measured shear stress responses.


Author(s):  
Ali Abbaspur ◽  
Mahmood Norouzi ◽  
Pooria Akbarzadeh ◽  
Seyyed Amirreza Vaziri

Recent research has shown that adding polymeric materials to mineral oils and consequently changing the behavior of Newtonian lubricants into viscoelastic materials will enhance the lubrication performance. Therefore, in order to examine theoretically the actual behavior of such lubricants, a suitable viscoelastic model must be considered. Hence, in this paper, the solution of fluid film lubrication is presented analytically using the Giesekus viscoelastic model. This constitutive model is based on the concept of configuration-dependent molecular mobility and is suitable for predicting the nonlinear viscoelastic properties. Indeed, it can describe the power-law regions for viscosity, the normal-stress coefficients, the elongational viscosity, and also the complex viscosity. In order to linearize the momentum and constitutive equations and obtain the generalized Reynolds equation, the perturbation method is used and the mobility factor is considered as the perturbation parameter. Here, the effects of mobility factor, outlet-to-inlet height ratio, and Weissenberg number on fluid film pressure distribution, velocity profiles, load capacity, friction coefficient, and first normal stress difference are investigated in detail. Due to the normal stress difference in viscoelastic fluids, using a viscoelastic fluid in contrast a Newtonian fluid can significantly increase the load-carrying capacity of bearing. Another result is with increasing the value of mobility factor, the fluid viscosity decreases and consequently the pressure distribution decreases simultaneously while the lateral normal stress in the y-direction increases. The term pressure distribution is more negligible than the term lateral normal stress and as a result by increasing the mobility factor the load-carrying capacity increases too. It is also observed that, when the Weissenberg numbers tend to infinity regardless of the mobility factor, the friction coefficient tends towards a constant value and rubber-like elasticity is responses.


2020 ◽  
Vol 842 ◽  
pp. 279-284
Author(s):  
Zhong Ren ◽  
Xing Yuan Huang

During the manufacture of plastic micro-pipe, a certain volume of gas should be properly injected into the inner cavity to overcome the collapse and adhesion problems. In this work, the extrusion forming of plastic micro-tube under the role of inner cavity’s gas were numerically studied. At the same time, the effect of inner cavity’s gas flow rate on the extrusion deformation of plastic micro-pipe was also numerically investigated by using the finite element method. A kind of 2D two-phase fluid geometric model and finite element mesh were established and some reasonable boundary conditions and material parameters were imposed. Under a fixed volume flow rate of melt, different flow rates of inner cavity gas were imposed on the inlet of inner cavity’s gas. The extrusion deformation profile and deformation ratio of plastic micro-pipe under different flow rates of gas were all obtained. To ascertain the mechanisms of effect of inner cavity’s gas flow rate on the extrusion deformation of plastic micro-tube, the flow velocities, pressure, shear rate, normal stress, and the first normal stress difference of melt all obtained and analyzed. Numerical results show that with the increase of inner cavity’s gas flow rate, the radial velocity, axial velocity, pressure, shear rate, normal stress, and the first normal stress difference of melt all increase, which makes the extrusion deformation become more and more serious. In practice, reasonable controlling of the inner cavity’s gas flow rate is very important. In the other hand, it can adjust the size of extruded plastic micro-pipe.


2020 ◽  
Vol 64 (3) ◽  
pp. 739-750 ◽  
Author(s):  
Dahang Tang ◽  
Flávio H. Marchesini ◽  
Ludwig Cardon ◽  
Dagmar R. D’hooge

Soft Matter ◽  
2020 ◽  
Vol 16 (43) ◽  
pp. 9864-9875
Author(s):  
Young Ki Lee ◽  
Kyu Hyun ◽  
Kyung Hyun Ahn

The first normal stress difference (N1) as well as shear stress of non-Brownian hard-sphere suspensions in small to large amplitude oscillatory shear flow is investigated.


Sign in / Sign up

Export Citation Format

Share Document