torsional stress
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 25)

H-INDEX

29
(FIVE YEARS 1)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Diane T. Takahashi ◽  
Danièle Gadelle ◽  
Keli Agama ◽  
Evgeny Kiselev ◽  
Hongliang Zhang ◽  
...  

AbstractEukaryotic topoisomerases I (TOP1) are ubiquitous enzymes removing DNA torsional stress. However, there is little data concerning the three-dimensional structure of TOP1 in the absence of DNA, nor how the DNA molecule can enter/exit its closed conformation. Here, we solved the structure of thermostable archaeal Caldiarchaeum subterraneum CsTOP1 in an apo-form. The enzyme displays an open conformation resulting from one substantial rotation between the capping (CAP) and the catalytic (CAT) modules. The junction between these two modules is a five-residue loop, the hinge, whose flexibility permits the opening/closing of the enzyme and the entry of DNA. We identified a highly conserved tyrosine near the hinge as mediating the transition from the open to closed conformation upon DNA binding. Directed mutagenesis confirmed the importance of the hinge flexibility, and linked the enzyme dynamics with sensitivity to camptothecin, a TOP1 inhibitor targeting the TOP1 enzyme catalytic site in the closed conformation.


2022 ◽  
Author(s):  
Johanna Hörberg ◽  
Kevin Moreau ◽  
Anna Reymer

Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein we address the impact of torsional stress on DNA complexation with homologous human basic-helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax, and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequences, the E-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ±5°/b.p. step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Joo Kim ◽  
Junho Park ◽  
Jae Young Lee ◽  
Do-Nyun Kim

AbstractThe ultrasensitive threshold response is ubiquitous in biochemical systems. In contrast, achieving ultrasensitivity in synthetic molecular structures in a controllable way is challenging. Here, we propose a chemomechanical approach inspired by Michell’s instability to realize it. A sudden reconfiguration of topologically constrained rings results when the torsional stress inside reaches a critical value. We use DNA origami to construct molecular rings and then DNA intercalators to induce torsional stress. Michell’s instability is achieved successfully when the critical concentration of intercalators is applied. Both the critical point and sensitivity of this ultrasensitive threshold reconfiguration can be controlled by rationally designing the cross-sectional shape and mechanical properties of DNA rings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diego A. Ramirez-Diaz ◽  
Adrián Merino-Salomón ◽  
Fabian Meyer ◽  
Michael Heymann ◽  
Germán Rivas ◽  
...  

AbstractFtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.


2021 ◽  
Vol 1128 (1) ◽  
pp. 012011
Author(s):  
P Maurya ◽  
N Mulani ◽  
C Michael ◽  
D Jebaseelan

2021 ◽  
Author(s):  
Purba Chatterjee ◽  
Nigel Goldenfeld ◽  
Sangjin Kim

Recent experiments showed that multiple copies of the molecular machine RNA polymerase (RNAP) can efficiently synthesize mRNA collectively in the active state of the promoter. However, environmentally-induced promoter repression results in long-distance antagonistic interactions that drastically reduce the speed of RNAPs and cause a quick arrest of mRNA synthesis. The mechanism underlying this transition between cooperative and antagonistic dynamics remains poorly understood. In this Letter, we introduce a continuum deterministic model for the translocation of RNAPs, where the speed of an RNAP is coupled to the local DNA supercoiling as well as the density of RNAPs on the gene. We assume that torsional stress experienced by individual RNAPs is exacerbated by high RNAP density on the gene and that transcription factors act as physical barriers to the diffusion of DNA supercoils. We show that this minimal model exhibits two transcription modes mediated by the torsional stress: a fluid mode when the promoter is active and a torsionally stressed mode when the promoter is repressed, in quantitative agreement with experimentally observed dynamics of co-transcribing RNAPs. Our work provides an important step towards understanding the collective dynamics of molecular machines involved in gene expression.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul Kaminski ◽  
Shiyuan Hong ◽  
Takeyuki Kono ◽  
Paul Hoover ◽  
Laimonis Laimins

ABSTRACT Topoisomerases regulate higher-order chromatin structures through the transient breaking and religating of one or both strands of the phosphodiester backbone of duplex DNA. TOP2β is a type II topoisomerase that induces double-strand DNA breaks at topologically associated domains (TADS) to relieve torsional stress arising during transcription or replication. TADS are anchored by CCCTC-binding factor (CTCF) and SMC1 cohesin proteins in complexes with TOP2β. Upon DNA cleavage, a covalent intermediate DNA-TOP2β (TOP2βcc) is transiently generated to allow for strand passage. The tyrosyl-DNA phosphodiesterase TDP2 can resolve TOP2βcc, but failure to do so quickly can lead to long-lasting DNA breaks. Given the role of CTCF/SMC1 proteins in the human papillomavirus (HPV) life cycle, we investigated whether TOP2β proteins contribute to HPV pathogenesis. Our studies demonstrated that levels of both TOP2β and TDP2 were substantially increased in cells with high-risk HPV genomes, and this correlated with large amounts of DNA breaks. Knockdown of TOP2β with short hairpin RNAs (shRNAs) reduced DNA breaks by over 50% as determined through COMET assays. Furthermore, this correlated with substantially reduced formation of repair foci such as phosphorylated H2AX (γH2AX), phosphorylated CHK1 (pCHK1), and phosphorylated SMC1 (pSMC1) indicative of impaired activation of DNA damage repair pathways. Importantly, knockdown of TOP2β also blocked HPV genome replication. Our previous studies demonstrated that CTCF/SMC1 factors associate with HPV genomes at sites in the late regions of HPV31, and these correspond to regions that also bind TOP2β. This study identifies TOP2β as responsible for enhanced levels of DNA breaks in HPV-positive cells and as a regulator of viral replication. IMPORTANCE High-risk human papillomaviruses (HPVs) infect epithelial cells and induce viral genome amplification upon differentiation. HPV proteins activate DNA damage repair pathways by inducing high numbers of DNA breaks in both viral and cellular DNAs. This activation is required for HPV genome replication. TOP2β is a type II topoisomerase that induces double-strand DNA breaks at topologically associated domains (TADS) to relieve torsional stress arising during transcription or replication. Our studies demonstrate that TOP2β levels are increased in HPV-positive cells and that this is required for HPV replication. Importantly, our studies further show that knockdown of TOP2β reduces the number of breaks by over 50% in HPV-positive cells and that this correlates with substantially impaired activation of DNA repair pathways. This study identifies a critical mechanism by which HPV replication is regulated by the topoisomerase TOP2β through DNA break formation.


2021 ◽  
Vol 118 (7) ◽  
pp. e2020452118
Author(s):  
Hisashi Ishida ◽  
Hidetoshi Kono

Torsional stress has a significant impact on the structure and stability of the nucleosome. RNA polymerase imposes torsional stress on the DNA in chromatin and unwraps the DNA from the nucleosome to access the genetic information encoded in the DNA. To understand how the torsional stress affects the stability of the nucleosome, we examined the unwrapping of two half superhelical turns of nucleosomal DNA from either end of the DNA under torsional stress with all-atom molecular dynamics simulations. The free energies for unwrapping the DNA indicate that positive stress that overtwists DNA facilitates a large-scale asymmetric unwrapping of the DNA without a large extension of the DNA. During the unwrapping, one end of the DNA was dissociated from H3 and H2A-H2B, while the other end of the DNA stably remained wrapped. The detailed analysis indicates that this asymmetric dissociation is facilitated by the geometry and bendability of the DNA under positive stress. The geometry stabilized the interaction between the major groove of the twisted DNA and the H3 αN-helix, and the straightened DNA destabilized the interaction with H2A-H2B. Under negative stress, the DNA became more bendable and flexible, which facilitated the binding of the unwrapped DNA to the octamer in a stable state. Consequently, we conclude that the torsional stress has a significant impact on the affinity of the DNA and the octamer through the inherent nature of the DNA and can change the accessibility of regulatory proteins.


Yeast ◽  
2020 ◽  
Author(s):  
Zeina Al‐Natour ◽  
Jisha Chalissery ◽  
Ahmed H. Hassan

Sign in / Sign up

Export Citation Format

Share Document