scholarly journals Switchable Purcell enhancement of photoluminescence by GST film

2021 ◽  
Vol 2015 (1) ◽  
pp. 012077
Author(s):  
O M Kushchenko ◽  
A D Sinelnik ◽  
I I Shishkin ◽  
D S Gets ◽  
S V Makarov ◽  
...  

Abstract In the present paper perovskite radiation enhancement on crystalline GST film compared to amorphous one has been studied. The photonic local density of states has been calculated by angular spectrum representation of the dyadic Green’s function. The Purcell factor has been calculated for perovskite luminescent on both amorphous and crystalline GST film. Almost 80% enhancement has been observed at wavelength 950 nm for system with perovskite thickness 25 nm, GST thickness 110 nm.

Author(s):  
Bo Lu ◽  
Yukio Tanaka

In the theory of superconducting junctions, Green’s function has an important role for obtaining Andreev bound states, local density of states and Josephson current in a systematic way. In this article, we show how to construct Green’s function on the surface of a topological insulator following McMillan’s formalism where the energy spectrum of electrons obeys a linear dispersion. For a model of a superconductor (S)/ferromagnet (F)/normal metal (N) junction, we show that the generation of a Majorana fermion gives rise to the enhanced local density of states and pair amplitude of odd-frequency pairing. We also derive an extended Furusaki–Tsukada’s formula of DC Josephson current in S/F/S junctions. The obtained Josephson current depends on the direction and magnitude of the magnetization. This article is part of the theme issue ‘Andreev bound states’.


2021 ◽  
Author(s):  
Shiva Hayati Raad ◽  
Zahra Atlasbaf

The integral equation (IE) method is one of the efficient approaches for solving electromagnetic problems, where dyadic Green’s function (DGF) plays an important role as the Kernel of the integrals. In general, a layered medium with planar, cylindrical, or spherical geometry can be used to model different biomedical media such as human skin, body, or head. Therefore, in this chapter, different approaches for the derivation of Green’s function for these structures will be introduced. Due to the recent great interest in two-dimensional (2D) materials, the chapter will also discuss the generalization of the technique to the same structures with interfaces made of isotropic and anisotropic surface impedances. To this end, general formulas for the dyadic Green’s function of the aforementioned structures are extracted based on the scattering superposition method by considering field and source points in the arbitrary locations. Apparently, by setting the surface conductivity of the interfaces equal to zero, the formulations will turn into the associated problem with dielectric boundaries. This section will also aid in the design of various biomedical devices such as sensors, cloaks, and spectrometers, with improved functionality. Finally, the Purcell factor of a dipole emitter in the presence of the layered structures will be discussed as another biomedical application of the formulation.


Sign in / Sign up

Export Citation Format

Share Document