scholarly journals Experimental research of metal hydride heat storage reactor processes

2021 ◽  
Vol 2039 (1) ◽  
pp. 012004
Author(s):  
D V Blinov ◽  
V I Borzenko ◽  
A V Bezdudny

Abstract The results of the experimental research of thermal, mass exchange and dynamical characteristics of processes inside the low temperature metal hydride (MH) thermal energy storage system are presented. Single stage pressure driven MH heat storage system of closed cycle concept was studied and tested. Intermetallic compound (IMC) LaFe0.1Mn0.3Ni4.8 in the quantity of 5 kg was used as main hydrogen storage/heat emitter element in the reactor. Nominal maximum hydrogen capacity of the reactor is 850 st.l. with though resulting effective volume of cycled hydrogen ended up to be around 240-250 st.l. The reactor type and intermetallic alloy, which were used in the series of experiments, proved to be somewhat suitable for the task, but more advanced heat exchange design along with selection of different type of IMC promise to increase the cycled effective volume along with the system dynamics, resulting in greater thermal energy power output.

Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Thermal storage in an important operational aspect of a solar thermal system which enables it to deliver power or energy when there is no sunlight available. Current thermal storage systems in solar thermal systems work based on transferring the generated heat from sunlight to a thermal mass material in an insulated reservoir and then withdraw it during dark hours. Some common thermal mass materials are stone, concrete, water, pressurized steam, phase changing materials, and molten salts. In the current paper, a hybrid thermal energy storage system which is based on two metal hydrides is proposed for a solar thermal system. The two hydrides which are considered for this system are magnesium hydride and lanthanum nickel. Although metal hydride Energy Storage Systems (ESS) suffer from slow response time which restricts them as a practical option for frequency regulation, off peak shaving and power supply stabilization; they can still demonstrate significant flexibility and good energy capacity. These specifications make them good candidates for thermal energy storage which are applicable to any capacity of a solar thermal system just by changing the size of the ESS unit.


Sign in / Sign up

Export Citation Format

Share Document