scholarly journals Simulation of a laminar-turbulent flow in three-dimensional aerodynamic configurations

2021 ◽  
Vol 2057 (1) ◽  
pp. 012080
Author(s):  
T V Poplavskaya ◽  
A V Boiko ◽  
K V Demyanko ◽  
S V Kirilovskiy ◽  
Y M Nechepurenko

Abstract The goal of the paper is to determine the position of the laminar-turbulent transition in the boundary layer of a prolate spheroid using the eN-method with the calibration of threshold N-factors. It is demonstrated that the predicted and experimental data on the laminarturbulent transition are in good agreement.

Author(s):  
Chao Liu ◽  
Jiren Zhou ◽  
Li Cheng

The experiment study was made to optimize the design of a pumping forebay. The Combined-sills were made in the forebay to eliminate the circulation and vortices of the diffusing flow successfully. The Numerical simulation of three-dimensional turbulent flow is applied on the complicate fore-and-aft flow of sills. The computational results are compared with the measurement results of physical model. The calculated results are in good agreement with the experimental data. The flow pattern is obviously improved. The study results have been applied in the project which gives a uniform approach flow to the pumping sump.


2013 ◽  
Vol 735 ◽  
pp. 613-646 ◽  
Author(s):  
N. De Tullio ◽  
P. Paredes ◽  
N. D. Sandham ◽  
V. Theofilis

AbstractThe linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach $2. 5$, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average ${\sim }17\hspace{0.167em} \% $ faster than the most unstable sinuous mode and ${\sim }30$ times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growth-rates registered in the presence of the roughness element, an amplification factor of $N= 9$ is reached within ${\sim }50$ roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.


1977 ◽  
Vol 99 (4) ◽  
pp. 634-638 ◽  
Author(s):  
V. N. Vatsa ◽  
M. J. Werle

A numerical algorithm is presented for solving laminar, steady, supersonic interacting boundary-layer flows for quasi-three-dimensional configurations. The interaction problem is treated as a boundary-value problem and a salient feature of the scheme is the direct implementation of the downstream boundary condition. Solutions are presented for axisymmetric and swept (yawed) compression ramps for both adiabatic and heat transfer conditions over a Mach number range of 2–6. The results are in good agreement with experimental data and existing theories for axisymmetric cases. For the swept (yawed) configurations, lack of experimental data makes a direct comparison impossible, but the present solutions are found to be in qualitative agreement with earlier studies. In addition, it is shown that the trends obtained for the sweep effects are well predicted by a simple extension of a two-dimensional asymptotic theory.


Sign in / Sign up

Export Citation Format

Share Document