scholarly journals HIEQLab, a facility to support multi-domain human-centered research on building performance and environmental quality

2021 ◽  
Vol 2069 (1) ◽  
pp. 012244
Author(s):  
A Pellegrino ◽  
V Serra ◽  
F Favoino ◽  
A Astolfi ◽  
L Giovannini ◽  
...  

Abstract Researches on building performances and environmental quality can be performed through different approaches, including dynamic numerical simulations, in-field studies, full scale test facilities and living labs. Researches performed through full scale test facilities allow carrying out studies under controlled realistic conditions, directly involving the final users. Such approach can significantly improve the scientific research on energy efficient and healthy buildings by fostering a synergistic and user-centered innovation process. Within this context, at Politecnico di Torino, the TEBE group (Technology, Energy, Building and Environment) has designed and is realizing a full-scale facility, aimed at implementing researches on building Indoor Environmental Quality (IEQ) and energy performance. The facility will enable multi-domain studies, including thermal, air quality, acoustic and lighting aspects, involving the final user in the research process. The paper describes the features of the facility and the challenges it was conceived to face.

1994 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Yoshiji Moro ◽  
Tomoo Fujita ◽  
Takeshi Kanno ◽  
Akira Kobayashi

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

2020 ◽  
pp. 1420326X2097902
Author(s):  
Hai-Xia Xu ◽  
Yu-Tong Mu ◽  
Yin-Ping Zhang ◽  
Wen-Quan Tao

Most existing models and standards for volatile organic compounds emission assume that contaminants are uniform in the testing devices. In this study, a three-dimensional transient numerical model was proposed to simulate the mass transport process based on a full-scale test chamber with a mixing fan, and the airflow field and contaminants concentration distribution were obtained within the chamber under airtight and ventilated conditions. The model was validated by comparing the numerical results with experimental data. The numerical results show that the contaminant source position and the airflow field characteristics have significant impact on the contaminant mixing, and the fan rotation has an important role in accelerating mixing. In the initial mixing stage, the concentration distribution is obviously uneven; as the mixing progresses, it gradually reaches acceptable uniformity except for some sensitive regions, such as high concentration region at the injection point of the contaminants and low concentration region at the air inlet. To ensure test accuracy, the monitor should avoid above sensitive regions; and some special regions are recommended where contaminant concentration uniformity can be reached sooner. The ventilated chamber results indicate that the mixture of contaminants in the chamber is actually better than the results shown by conventional test method.


2002 ◽  
Vol 218 (1-3) ◽  
pp. 169-178 ◽  
Author(s):  
J.G Liu ◽  
H.L Xiao ◽  
C.P Li

2014 ◽  
Vol 501-504 ◽  
pp. 2132-2137

Removed due to plagiarism. The original was published by: Liu, Deng and Chu (eds) © 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg Geotechnical Engineering for Disaster Mitigation and Rehabilitation http://www.ftsl.itb.ac.id/kk/geotechnical_engineering/wp-content/uploads/2008/06/irsyam-165.pdf


2008 ◽  
Vol 51 (2-3) ◽  
pp. 138-155 ◽  
Author(s):  
Peter Gauer ◽  
Karstein Lied ◽  
Krister Kristensen

Sign in / Sign up

Export Citation Format

Share Document