test chamber
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 151)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Xianwen Zhou ◽  
Chaoyang Gu ◽  
Yuyu Sun ◽  
Chengjing Han ◽  
Wei Gu ◽  
...  

With the development of various physical industries, people pay more attention to reliability tests and test equipment. To solve the problem of making maintenance strategy of an environmental test chamber for reliability test, a periodic preventive maintenance strategy based on RCM(Reliability Centre Maintenance) is proposed. Firstly, a multi-objective optimization model of reliability and maintenance cost is established by combining reliability theory and life distribution theory, and two objectives of equipment reliability and maintenance cost are considered. Secondly, the actual environmental test chamber fault maintenance data is analyzed, and it is found the fault distribution meets the dual parameter Weibull. Finally, the particle swarm optimization algorithm is used to solve the multi-objective model optimization, and a series of Pareto optimal solutions are obtained, that is, the number of maintenance times and the corresponding time interval in the operation cycle of the environmental test chamber, and these solutions might be good references for maintenance management personnel.


2021 ◽  
Author(s):  
Masahiro Urushidani ◽  
Akira Kawayoshi ◽  
Tomohiro Kotaki ◽  
Keiichi Saeki ◽  
Yasuko Mori ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is transmitted by droplet and contact infection. SARS-CoV-2 that adheres to environmental surfaces remains infectious for several days. We herein attempted to inactivate SARS-CoV-2 and influenza A virus adhering to an environmental surface by spraying aerosolized hypochlorous acid solution and hydrogen peroxide solution in the form of Dry Fog (fog that does not wet objects even if touched). SARS-CoV-2 and influenza virus were dried on plastic plates and placed into a test chamber for inactivation by the Dry Fog spraying of disinfectants. The results obtained showed that Dry Fog spraying inactivated SARS-CoV-2 and influenza A virus in time- and exposed disinfectant amount-dependent manners. SARS-CoV-2 was more resistant to the virucidal effects of aerosolized hypochlorous acid solution and hydrogen peroxide solution than influenza A virus; therefore, higher concentrations of spray solutions were required to inactivate SARS-CoV-2 than influenza A virus. The present results provide important information for the development of a strategy that inactivates SARS-CoV-2 and influenza A virus on environmental surfaces by spatial spraying.


2021 ◽  
Vol 9 (12) ◽  
pp. 2575
Author(s):  
Claire Bailey ◽  
Catherine Makison-Booth ◽  
Jayne Farrant ◽  
Alan Beswick ◽  
John Chewins ◽  
...  

When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.


2021 ◽  
Vol 10 (2) ◽  
pp. 281-288
Author(s):  
Marwa Othmen ◽  
Radwen Bahri ◽  
Slaheddine Najar ◽  
Ahmed Hannachi

Abstract. This article aims to present equipment designed and developed to study the effective thermal conductivity of composite panels. The composite panel used is a rigid polyurethane foam covered with a layer of aluminum on both sides. The panel is mounted in the test chamber equipped with several sensors and actuators connected via an Arduino platform. Tests have been carried out by applying heat to impose various interior temperatures. Sensors at different locations are used to monitor and record temperatures in and around the composite panel during heating and natural cooling. A model, based on the Fourier equations of thermal conduction and natural convection heat transfer for the steady state, was developed to assess the effective thermal conductivity. The performance of the system was confirmed using temperature signals through the panels for thermal characterization of composite materials. The determined effective thermal conductivity obtained was in agreement with the experimental values reported in the technical data sheets with relative deviations of less than 10 %.


2021 ◽  
Vol 157 ◽  
pp. 106816
Author(s):  
Caihong Xu ◽  
Hui Chen ◽  
Zhe Liu ◽  
Guodong Sui ◽  
Dan Li ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7276
Author(s):  
Wilfrido Martinez-Molina ◽  
Hugo L. Chavez-Garcia ◽  
Tezozomoc Perez-Lopez ◽  
Elia M. Alonso-Guzman ◽  
Mauricio Arreola-Sanchez ◽  
...  

The present research work shows the effect on the carbonation of Portland cement-based mortars (PC) with the addition of green materials, specifically residues from two groups: agricultural and industrial wastes, and minerals and fibres. These materials have the purpose of helping with the waste disposal, recycling, and improving the durability of concrete structures. The specimens used for the research were elaborated with CPC 30R RS, according to the Mexican standard NMX-C-414, which is equivalent to the international ASTM C150. The aggregates were taken from the rivers Lerma and Huajumbaro, in the State of Michoacan, Mexico, and the water/cement relation was 1:1 in weight. The carbonation analyses were performed with cylinder specimens in an accelerated carbonation test chamber with conditions of 65 +/− 5% of humidity and 25 +/− 2 °C temperature. The results showed that depending on the PC substitutions, the carbonation front advance of the specimens can increase or decrease. It is highlighted that the charcoal ashes, blast-furnace slags, and natural perlite helped to reduce the carbonation advance compared to the control samples, consequently, they contributed to the durability of concrete structures. Conversely, the sugarcane bagasse ash, brick manufacturing ash, bottom ash, coal, expanded perlite, metakaolin, and opuntia ficus-indica dehydrated fibres additions increased the velocity of carbonation front, helping with the sequestration of greenhouse gases, such as CO2, and reducing environmental pollution.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Song-hua Mei ◽  
Xu-li Liang ◽  
Lei Wen ◽  
Zi-long Kou

Using the freeze-thaw cycle test chamber, the red sandstone samples are subjected to cyclic freeze-thaw tests. The physical properties, static mechanical properties of freeze-thaw damage rocks, and the compressional wave velocity at specific axial pressure are measured using conventional physical tests and uniaxial compression tests. The mechanical properties of freeze-thaw damage rocks under dynamic and static loading were studied using Hopkinson pressure bar which can exert axial pressure. The studies show that, with the increase of freeze-thaw cycles, the surface layer of the rock sample undergoes spalling phenomenon, the weight gradually decreases, the sample compactness becomes worse, there are microcracks between the cemented particles, and the compressive strength and elastic modulus decrease. Under the static loading, the longitudinal wave velocity of freeze-thaw damaged samples change significantly compared with that of samples without freeze-thaw. The freeze-thaw damage degree, axial pressure, and strain rate are coupled with each other, which together affect the dynamic mechanical properties of samples, and make the variation of mechanical parameters, such as dynamic peak strength and dynamic elastic modulus of rock. The combined action of freeze-thaw damage and axial pressure weakens the strain rate effect of samples, but when the incident wave of SHPB test is same, the dynamic strength and elastic modulus of freeze-thaw damaged samples are reduced compared with those without freeze-thaw. Combining with strain equivalence principle, the constitutive relation of freeze-thaw damage of red sandstone under dynamic and static combined loading can reflect the influence of coupling damage of axial pressure and freeze-thaw, dynamic impact parameters, and other factors, which are in good agreement with the test results.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012119
Author(s):  
Andres Gallardo ◽  
Umberto Berardi

Abstract This paper focuses on validating a simulation model of a radiant ceiling panel (RCP) incorporating phase change materials (PCM) for heating and cooling applications in buildings. The development of an RCP with thermal energy storage capacity aims to encourage high thermal mass radiant systems in existing buildings to replace the traditional all-air HVAC system. First, a heat flow meter (HFM) is used to perform enthalpy measurements at a product scale (macro-encapsulated PCM). Then, a small test chamber is constructed to measure the dynamic thermal performance of an RCP with PCM under well-known and realistic boundary conditions. A known thermal resistance is used to establish a realistic heat transfer coefficient between room air (represented by the temperature of a temperature-controlled metal plate) and ceiling. The results show that HFM enthalpy measurements of products incorporating PCM are within ± 2% of manufacturers’ data. Additionally, results indicate that a test chamber can be used for validating a dynamic simulation model of the RCP with PCM installed in a room. The proposed method can be helpful during the system optimization phase, as many conditions and sample configurations can be tested without spending too much time or money on test rooms or real building monitoring.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012045
Author(s):  
Yanzhong Wang ◽  
E Shiyuan

Abstract Rolling bearings are widely used in aviation, aerospace and other important fields, and their reliability is greatly affected by external vibration excitation during service. Due to the large volume and high cost of the combined structure of shaking table and test chamber, this paper designed a dynamic reliability test bed specially for rolling bearings to study the influence of external vibration excitation with different directions, frequencies and amplitudes on vibration signals and service life of rolling bearings. The test bed is loaded with external excitation by means of electromagnetic shakers in two directions, and the flexible material is used to realize the displacement of the test chamber under two external excitation directions at the same time. The bearing vibration loading life test carried out by this test bed has important guiding significance for the design of rolling bearing. The experimental results show that the test bed can apply axial and radial vibration loads of 1-800Hz sinusoidal waveform, and the vibration acceleration can reach 1g, which can simulate the effect of actual working conditions.


Sign in / Sign up

Export Citation Format

Share Document