scholarly journals Development of IoT Based Cuffless Blood Pressure Measurement System

2021 ◽  
Vol 2071 (1) ◽  
pp. 012030
Author(s):  
M S Norsuriati ◽  
M S Norehan Mohd Sobri ◽  
H Zaidatul Hafiszah ◽  
A Mohamad Nazib ◽  
W Z Wan Suhaimizan ◽  
...  

Abstract Hypertension, commonly known as high blood pressure, is a major concern for people globally and in Malaysia. The hypertensive patient must commute to the hospital visiting their physician regularly for blood pressure (BP) monitoring using a cuff-based device. The patient may feel uncomfortable and pain when the device inflates the cuff and tightens around the arm for a BP measurement. Hence, to overcome this problem, this paper proposed a cuffless BP measurement using pulse transit time (PTT). In this method, a delay time between the peak of Photoplethysmogram (PPG) signals at the fingertip and the earlobe were correlated with BP. These signals were transferred to a computer via Arduino uno microcontroller and analyzed by the MATLAB R2019a software. A preliminary result shows that the developed system is able to record PTT and display the estimated BP value on the ThingSpeak webpage and ThingView apps. With the IoT platform, the cuffless BP can be monitor remotely, and the results can be store on the cloud healthcare system for hypertensive management.

2019 ◽  
Vol 9 (14) ◽  
pp. 2922 ◽  
Author(s):  
Shing-Hong Liu ◽  
Li-Jen Liu ◽  
Kuo-Li Pan ◽  
Wenxi Chen ◽  
Tan-Hsu Tan

With the advancement of wearable technology, many physiological monitoring instruments are gradually being converted into wearable devices. However, as a consumer product, the blood pressure monitor is still a cuff-type device, which does perform a beat-by-beat continuous blood pressure measurement. Consequently, the cuffless blood pressure measurement device was developed and it is based on the pulse transit time (PTT), although its accuracy remains inadequate. According to the cardiac hemodynamic theorem, blood pressure relates to the arterial characteristics and the contours of the pulse wave include some characteristics of the artery. Therefore, the purpose of this study was to use the contour characteristics of the pulses measured by photoplethysmography (PPG) to estimate the blood pressure using a linear multi-dimension regression model. Ten subjects participated in the experiment, and the blood pressure levels of the subjects were elevated by exercise. The results showed that the mean and standard deviation (mean ± SD) of the root mean square error of the estimated systolic and diastolic pressures within the best five parameters were 6.9 ± 2.81 mmHg and 4.0 ± 0.65 mmHg, respectively. Compared to the results that used one parameter, the PTT, for estimating the systolic and diastolic pressures, 8.2 ± 2.1 mmHg and 4.5 ± 0.79 mmHg, respectively, our results were better.


Sign in / Sign up

Export Citation Format

Share Document