scholarly journals Using the Characteristics of Pulse Waveform to Enhance the Accuracy of Blood Pressure Measurement by a Multi-Dimension Regression Model

2019 ◽  
Vol 9 (14) ◽  
pp. 2922 ◽  
Author(s):  
Shing-Hong Liu ◽  
Li-Jen Liu ◽  
Kuo-Li Pan ◽  
Wenxi Chen ◽  
Tan-Hsu Tan

With the advancement of wearable technology, many physiological monitoring instruments are gradually being converted into wearable devices. However, as a consumer product, the blood pressure monitor is still a cuff-type device, which does perform a beat-by-beat continuous blood pressure measurement. Consequently, the cuffless blood pressure measurement device was developed and it is based on the pulse transit time (PTT), although its accuracy remains inadequate. According to the cardiac hemodynamic theorem, blood pressure relates to the arterial characteristics and the contours of the pulse wave include some characteristics of the artery. Therefore, the purpose of this study was to use the contour characteristics of the pulses measured by photoplethysmography (PPG) to estimate the blood pressure using a linear multi-dimension regression model. Ten subjects participated in the experiment, and the blood pressure levels of the subjects were elevated by exercise. The results showed that the mean and standard deviation (mean ± SD) of the root mean square error of the estimated systolic and diastolic pressures within the best five parameters were 6.9 ± 2.81 mmHg and 4.0 ± 0.65 mmHg, respectively. Compared to the results that used one parameter, the PTT, for estimating the systolic and diastolic pressures, 8.2 ± 2.1 mmHg and 4.5 ± 0.79 mmHg, respectively, our results were better.

Author(s):  
Agung W. Setiawan ◽  
Nur A. Heryanto ◽  
Fadel M. Putra ◽  
Febri Suyitno ◽  
M. Andre Martin ◽  
...  

<span>Non-occlusive blood pressure measurement method is developed to avoid the use of discontinuous and uncomfortable cuff-based methods. In this research, Pulse Transit Time (PTT) and Photoplethysmogram Intensity Ratio (PIR) is used to measure blood pressure. Two photoplethysmogram (PPG) sensors that are placed on the wrist and one of the finger joints both on the left hand is used to get the PTT and PIR. The name of the device is ARTSEN. During measurement, there is a measurement error caused by the hydrostatic effect when the device position is not inline with the heart. To minimize this error, this research proposes an automatic continuous blood pressure monitor. The device will conduct measurement only when the height of the device is inline with the heart. Accelerometer and gyroscope are used to detect the height of the device. There are 30 subjects that are involved in this research. To evaluate the performance of the device, there are two measurement conditions, during lying in the bed and sit down position. The blood pressure measurement is conducted using ARTSEN and sphygmomanometer (as the gold standard of blood pressure measurement). The average error of systolic blood pressure is 8 mmHg with standard deviation 5 mmHg, and average error of diastolic blood pressure is 8 mmHg with standard deviation 4 mmHg.</span>


2019 ◽  
Vol 2 (3) ◽  
pp. 206-214
Author(s):  
Putri Indes Oktabriani ◽  
Fuad Ughi ◽  
Aulia Arif Iskandar

The continuous blood pressure measurement research is widely known for helpingthe development of ambulatory blood pressure monitoring where it measures blood pressureevery 15 to 30 minutes throughout the day. The cuff is a problem for the patient withAmbulatory Blood Pressure Monitor. It can make a person feel uncomfortable and must staystill when the cuff starts to inflate. It is limiting and disturbing their daily activity when thedevice is starting to measure the blood pressure. Blood pressure measurement without cuff isbeing proposed in this research, called cuff-less blood pressure measurement. It will be based onPhotoplethysmography (PPG) and Electrocardiography (ECG) signal analysis. ECG (Lead 1,Lead 2, and Lead 3) with PPG signal produced from index finger on the left hand are comparedand analyzed. Then the relation of PPG and ECG signal and the optimum location for daily usecan be obtained. The optimum location will be based on the electrode’s position that producedthe optimum ECG lead Signal to measure blood pressure. Based on the result, PPG and ECGsignal have a linear relation with Blood Pressure Measurement and Lead 1 is more stable inproducing the ECG signal. The equation from Lead 1 appeared as one of the optimum equationsfor measuring Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thenral Socrates ◽  
Philipp Krisai ◽  
Annina S. Vischer ◽  
Andrea Meienberg ◽  
Michael Mayr ◽  
...  

AbstractA cuffless blood pressure (BP) device (TestBP) using pulse transit time is in clinical use, but leads to higher BP values compared to a cuff-based 24 h-BP reference device (RefBP). We evaluated the impact of a recent software update on BP results and TestBP’s ability to differentiate between normo- and hypertension. 71 individuals had TestBP (Somnotouch-NIBP) and RefBP measurements simultaneously performed on either arm. TestBP results with software version V1.5 were compared to V1.4 and RefBP. Mean 24 h (± SD) BP for the RefBP, TestBP-V1.4 and TestBP-V1.5 were systolic 134.0 (± 17.3), 140.8 (± 20) and 139.1 (± 20) mmHg, and diastolic 79.3 (± 11.7), 85.8 (± 14.1) and 83.5 (± 13.0) mmHg, respectively (p-values < 0.001). TestBP-V1.5 area under the curve (95% confidence interval) versus RefBP for hypertension detection was 0.92 (0.86; 0.99), 0.94 (0.88; 0.99) and 0.77 (0.66; 0.88) for systolic and 0.92 (0.86; 0.99), 0.92 (0.85; 0.99) and 0.84 (0.74; 0.94) for diastolic 24 h, awake and asleep BP respectively. TestBP-V1.5 detected elevated systolic/diastolic mean 24 h-BP with a 95%/90% sensitivity and 65%/70% specificity. Highest Youden’s Index was systolic 133 (sensitivity 95%/specificity 80%) and diastolic 87 mmHg (sensitivity 81%/specificity 98%). The update improved the agreement to RefBP. TestBP was excellent for detecting 24 h and awake hypertensive BP values but not for asleep BP values.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012030
Author(s):  
M S Norsuriati ◽  
M S Norehan Mohd Sobri ◽  
H Zaidatul Hafiszah ◽  
A Mohamad Nazib ◽  
W Z Wan Suhaimizan ◽  
...  

Abstract Hypertension, commonly known as high blood pressure, is a major concern for people globally and in Malaysia. The hypertensive patient must commute to the hospital visiting their physician regularly for blood pressure (BP) monitoring using a cuff-based device. The patient may feel uncomfortable and pain when the device inflates the cuff and tightens around the arm for a BP measurement. Hence, to overcome this problem, this paper proposed a cuffless BP measurement using pulse transit time (PTT). In this method, a delay time between the peak of Photoplethysmogram (PPG) signals at the fingertip and the earlobe were correlated with BP. These signals were transferred to a computer via Arduino uno microcontroller and analyzed by the MATLAB R2019a software. A preliminary result shows that the developed system is able to record PTT and display the estimated BP value on the ThingSpeak webpage and ThingView apps. With the IoT platform, the cuffless BP can be monitor remotely, and the results can be store on the cloud healthcare system for hypertensive management.


Sign in / Sign up

Export Citation Format

Share Document