scholarly journals From Photon to Oganesson: Lie Algebra Realization of the Standard Model Extending over the Periodic Table

2021 ◽  
Vol 2081 (1) ◽  
pp. 012034
Author(s):  
Erik Trell

Abstract As reported in a series of previous PIRT conferences, a direct SU(3) structural realization of the Standard Model has been developed based upon Marius Sophus Lie’s original Norwegian Ph.D. thesis Over en Classe Geometriske Transformationer from 1871 (and thus due for a most deserved 150-year anniversary). It elucidates how “the theory of main tangential curves can be brought back to that of rounded curves”, anticipating a coherent linear representation of the elementary particles instead of the rotational chosen since they were considered point-like and amorphous when they many years later entered the stage. Under these premises the Standard Model has built a magnificent, undoubtedly true but congested multi-particle system whereas the Lie continuous transformation element, the partial derivative ’straight line of length equal to zero’ outlines an isotropic vector matrix lattice of crystallographic Killing root space diagram A3 form which from the Nucleon and inwards can backtrack the Standard Model geometrically, as well as continue outward iterating to a space-filling solid state R3×SO(3) wave-packet complex tessellating the whole periodic table with electron shells and subshells, isotope spectrum, neutron captures, radiative channels, oxidation states, molecular binding sites etc. in successive layers also including the Lanthanides in the sixth period and the Actinides in the seventh, in which now the concluding Oganesson has been reached in perfectly well-built saturated noble gas shape and condition.

2011 ◽  
Vol 11 (5) ◽  
pp. 1437-1446 ◽  
Author(s):  
J. Gemmrich ◽  
C. Garrett

Abstract. Extreme surface waves occur in the tail of the probability distribution. Their occurrence rate can be displayed effectively by plotting ln(–ln P), where P is the probability of the wave or crest height exceeding a particular value, against the logarithm of that value. A Weibull distribution of the exceedance probability, as proposed in a standard model, then becomes a straight line. Earlier North Sea data from an oil platform suggest a curved plot, with a higher occurrence rate of extreme wave and crest heights than predicted by the standard model. The curvature is not accounted for by second order corrections, non-stationarity, or Benjamin-Feir instability, though all of these do lead to an increase in the exceedance probability. Simulations for deep water waves suggest that, if the waves are steep, the curvature may be explained by including up to fourth order Stokes corrections. Finally, the use of extreme value theory in fitting exceedance probabilities is shown to be inappropriate, as its application requires that not just N, but also lnN, be large, where N is the number of waves in a data block. This is unlikely to be adequately satisfied.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2014 ◽  
Vol 36 (10) ◽  
pp. 2156-2167
Author(s):  
Qiang LI ◽  
Deng-Guo FENG ◽  
Li-Wu ZHANG ◽  
Zhi-Gang GAO

Sign in / Sign up

Export Citation Format

Share Document