scholarly journals Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction

2021 ◽  
Vol 2114 (1) ◽  
pp. 012025
Author(s):  
S A Hamdan ◽  
I M Ibrahim ◽  
I M Ali

Abstract Rutile and anatase titanium dioxide TiO2 nanostructures has been prepared successfully by hydrothermal technique. Also Rutile and anatase TiO2/n-Si heterojunction detector (HJ) has been fabricated. Hall Effect measurements confirmed that prepared films are n-type. The optical absorption spectra showed the prepared films have peak absorption in UV region. TiO2/n-Si heterojunction had exhibited diode-like rectifying I-V behaviour in the dark as well as under the illumination. Ideality factor greater than 2 and rectification factor for Rutile TiO2/n-Si HJ is equal 32.0961 higher than anatase TiO2/n-Si HJ. Photodetetor based on rutile TiO2/n-Si HJ showed higher responsivity and incident photon-to-current efficiency (IPCE) than photodetector based on anatase TiO2/n-Si HJ. Photodetetor based on rutile TiO2/n-Si HJ has responsivity is 69.11Amp/W at 570 nm and IPCE is 21.2%at 370nm and 1.38% at 570nm. For the purpose of investigating the impacts of TiO2 crystal phase upon the performance of the device despite the fact that rutile has a lower band gap compared to anatase, rutile exhibits better photovoltaic activity due to its higher specific surface area.

1999 ◽  
Vol 14 (3) ◽  
pp. 698-707 ◽  
Author(s):  
Nickolay Golego ◽  
S. A. Studenikin ◽  
Michael Cocivera

Titanium dioxide thin films prepared with and without lithium and niobium were as follows: uniform, crack-free, and stoichiometric, amorphous as-deposited at 300 °C and below; polycrystalline anatase when deposited at 400 °C or annealed at 500−800 °C; and rutile when annealed at 900 °C. Films prepared around 200 °C were very porous, but the porosity decreased as the substrate temperature increased. Optical absorption spectra revealed an indirect bandgap of 3.0 eV for amorphous and anatase films, and a direct bandgap of the same value in rutile. Dark dc conductivity of undoped films was lower than 10−10 (Ω · cm)−1; Hall effect measurements indicated that effective electron mobility was below 1 cm2/(V · s). The presence of Nb and Li increased the conductivity by 2–3 orders of magnitude, similar to the effect of hydrogen annealing. Illumination increased the conductivity by several orders of magnitude, and the decay followed a multiexponential law extending into the 106 second range after irradiation was stopped. The electronic properties of the films were determined by oxygen-related surface states at grain boundaries. Samples containing Li exhibited considerable sensitivity to water vapor.


2018 ◽  
Vol 255 (6) ◽  
pp. 1700616 ◽  
Author(s):  
Cheng Liu ◽  
Yumin Song ◽  
Xiaohua Yu ◽  
Jianxiong Liu ◽  
Jiushuai Deng

Author(s):  
Felix Henneke ◽  
Lin Lin ◽  
Christian Vorwerk ◽  
Claudia Draxl ◽  
Rupert Klein ◽  
...  

2014 ◽  
Vol 548-549 ◽  
pp. 124-128 ◽  
Author(s):  
S. Insiripong ◽  
S. Kaewjeang ◽  
U. Maghanemi ◽  
H.J. Kim ◽  
N. Chanthima ◽  
...  

In this work, properties of Nd3+ in Gd2O3-CaO-SiO2-B2O3 glass systems with composition 25Gd2O3-10CaO-10SiO2-(55-x)B2O3-xNd2O3 where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol% were investigated. The optical absorption spectra show peaks at 4F3/2 (877 nm) , 4F5/2+2H9/2 (802 nm), 4F7/2+4S3/2 (743 nm), 4F9/2 (682 nm), 2H11/2 (627 nm), 2G7/2 +4G5/2 (582 nm), 4G7/2 +2K13/2 (527 nm), 4G11/2 (481 nm), 2P1/2 (427 nm) and 2L15/2 + 4D1/2 + 1I11/2+ 4D5/2+ 4D3/2 (355 nm) reflecting the Nd3+ ions in glass matrices. The densities were increased with increasing of Nd2O3 concentration. This indicates the increase of the molecular weight by the replacement of B2O3 with a heavier Nd2O3 oxide in the glass. The upconversion luminescence spectra show bands at 393 nm for all Nd2O3 concentration and the strongest intensity from 2.5 % mol of Nd2O3 was obtained. For NIR luminescence, the intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1.5 mol% and beyond 1.5 mol% the concentration quenching is observed.


1962 ◽  
Vol 40 (10) ◽  
pp. 1480-1489 ◽  
Author(s):  
J. W. Bichard ◽  
J. C. Giles

The optical absorption spectra of arsenic and phosphorus donor impurities in silicon have been studied under conditions of improved resolution. Absorption lines due to transitions from the impurity ground state to the excited states 2p0, 2p±, 3p0, 3p±, 4p0, 4 p±, and 5p0, and 5p± have been observed at 4.2° K. The relative intensities of some of these absorption lines are compared with existing experimental and theoretical estimates. The contribution of instrumental broadening to the observed line widths is assessed and natural line widths are estimated. The estimates indicate values for the natural line widths which are much less than those previously reported. For phosphorus impurity, the natural line widths are estimated to be less than 0.08 × 10−3 electron volts full width at half-maximum. The possibility of concentration broadening is discussed in connection with the arsenic data.


Sign in / Sign up

Export Citation Format

Share Document