scholarly journals Detection of Incoherent Signal In Molecular Communication Based on Channel Impulse Response

2021 ◽  
Vol 2136 (1) ◽  
pp. 012039
Author(s):  
Shanchao Wen

Abstract In order to solve the problem of intercode interference (ISI) and background noise caused by molecular diffusion in molecular communication, Honda analyzed and studied four methods to resist ISI signal, and analyzed the characteristics of the received signal at the moment. A reliable incoherent molecular signal detection algorithm independent of channel impulse response (CIR) is proposed, and an adaptive threshold calculation method is designed, and the theoretical value of bit error rate (BER) is given. The simulation results show that the proposed scheme BER is lower than the traditional scheme BER under the same computational complexity, so it has a wide application prospect in the nanoscale molecular communication system with limited computing power.

2012 ◽  
Vol 11 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Dustin Maas ◽  
Mohammad H. Firooz ◽  
Junxing Zhang ◽  
Neal Patwari ◽  
Sneha K. Kasera

Author(s):  
Brian Skoglind ◽  
Travis Roberts ◽  
Sourabh Karmakar ◽  
Cameron Turner ◽  
Laine Mears

Abstract Electrical connections in consumer products are typically made manually rather than through automated assembly systems due to the high variety of connector types and connector positions, and the soft flexible nature of their structures. Manual connections are prone to failure through missed or improper connections in the assembly process and can lead to unexpected downtime and expensive rework. Past approaches for registering connection success such as vision verification or Augmented Reality have shown limited ability to verify correct connection state. However, the feasibility of an acoustic-based verification system for electrical connector confirmation has not been extensively researched. One of the major problems preventing acoustic based verification in a manufacturing or assembly environment is the typically low signal to noise ratio (SNR) between the sound of an electrical connection and the diverse soundscape of the plant. In this study, a physical means of background noise mitigation and signature amplification are investigated in order to increase the SNR between the electrical connection and the plant soundscape in order to improve detection. The concept is that an increase in the SNR will lead to an improvement in the accuracy and robustness of an acoustic event detection and classification system. Digital filtering has been used in the past to deal with low SNRs, however, it runs the risk of filtering out potential important features for classification. A sensor platform is designed to filter out and reduce background noise from the plant without effecting the raw acoustic signal of the electrical connection, and an automated detection algorithm is presented. The solution is over 75% effective at detecting and classifying connections.


2014 ◽  
Vol 711 ◽  
pp. 546-549
Author(s):  
Wei Lin ◽  
Wei Hwa Chiang

Taipei Top Church Auditorium is a hall primarily intended for praise and worship. A three dimensional ray tracing computer simulation was used to provide sound energy distribution on the audience area of the hall, realistic design have been performed. The volume of the hall is 24600m3, which is occupied for 2200 people and equipped the hall with acoustical curtains by modifying its acoustical characteristics. Objective measurements of impulse response are reported, and background noise control and noise isolation are also be considered in the design phase. Reinforcement system is conducted to meet all the activity for the acoustical environments.


2021 ◽  
Vol 263 (5) ◽  
pp. 1794-1803
Author(s):  
Michal Luczynski ◽  
Stefan Brachmanski ◽  
Andrzej Dobrucki

This paper presents a method for identifying tonal signal parameters using zero crossing detection. The signal parameters: frequency, amplitude and phase can change slowly in time. The described method allows to obtain accurate detection using possibly small number of signal samples. The detection algorithm consists of the following steps: frequency filtering, zero crossing detection and parameter reading. Filtering of the input signal is aimed at obtaining a signal consisting of a single tonal component. Zero crossing detection allows the elimination of multiple random zero crossings, which do not occur in a pure sine wave signal. The frequency is based on the frequency of transitions through zero, the amplitude is the largest value of the signal in the analysed time interval, and the initial phase is derived from the moment at which the transition through zero occurs. The obtained parameters were used to synthesise a compensation signal in an active tonal component reduction algorithm. The results of the algorithm confirmed the high efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document