scholarly journals Black hole spacetimes with self-gravitating, massive accretion tori

2011 ◽  
Vol 283 ◽  
pp. 012036 ◽  
Author(s):  
Nikolaos Stergioulas
2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Takahisa Igata ◽  
Shinya Tomizawa

2019 ◽  
Vol 100 (10) ◽  
Author(s):  
Chun-Hung Chen ◽  
Hing-Tong Cho ◽  
Alan S. Cornell ◽  
Gerhard E. Harmsen

2011 ◽  
Vol 84 (12) ◽  
Author(s):  
R. O’Shaughnessy ◽  
B. Vaishnav ◽  
J. Healy ◽  
Z. Meeks ◽  
D. Shoemaker

2015 ◽  
Vol 32 (15) ◽  
pp. 157001 ◽  
Author(s):  
Alexander Grant ◽  
Éanna É Flanagan

2018 ◽  
Vol 27 (14) ◽  
pp. 1847025 ◽  
Author(s):  
Shahar Hod

Black-hole spacetimes are known to possess closed light rings. We here present a remarkably compact theorem which reveals the physically intriguing fact that these unique null circular geodesics provide the fastest way, as measured by asymptotic observers, to circle around spinning Kerr black holes.


2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


Sign in / Sign up

Export Citation Format

Share Document