scholarly journals Stochastic cellular automata model for wildland fire spread dynamics

2011 ◽  
Vol 285 ◽  
pp. 012038 ◽  
Author(s):  
Rodolfo Maduro Almeida ◽  
Elbert E N Macau
2021 ◽  
Vol 135 ◽  
pp. 104895
Author(s):  
Wenyu Jiang ◽  
Fei Wang ◽  
Linghang Fang ◽  
Xiaocui Zheng ◽  
Xiaohui Qiao ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 428 ◽  
Author(s):  
Holly A. Perryman ◽  
Christopher J. Dugaw ◽  
J. Morgan Varner ◽  
Diane L. Johnson

In spite of considerable effort to predict wildland fire behaviour, the effects of firebrand lift-off, the ignition of resulting spot fires and their effects on fire spread, remain poorly understood. We developed a cellular automata model integrating key mathematical models governing current fire spread models with a recently developed model that estimates firebrand landing patterns. Using our model we simulated a wildfire in an idealised Pinus ponderosa ecosystem. Varying values of wind speed, surface fuel loading, surface fuel moisture content and canopy base height, we investigated two scenarios: (i) the probability of a spot fire igniting beyond fuelbreaks of various widths and (ii) how spot fires directly affect the overall surface fire’s rate of spread. Results were averages across 2500 stochastic simulations. In both scenarios, canopy base height and surface fuel loading had a greater influence than wind speed and surface fuel moisture content. The expected rate of spread with spot fires occurring approached a constant value over time, which ranged between 6 and 931% higher than the predicted surface fire rate of spread. Incorporation of the role of spot fires in wildland fire spread should be an important thrust of future decision-support technologies.


2011 ◽  
Vol 22 (06) ◽  
pp. 607-621 ◽  
Author(s):  
KLAUS LICHTENEGGER ◽  
WILHELM SCHAPPACHER

In this paper a stochastic cellular automata model is examined, which has been developed to study a "small" world, where local changes may noticeably alter global characteristics. This is applied to a climate model, where global temperature is determined by an interplay between atmospheric carbon dioxide and carbon stored by plant life. The latter can be released by forest fires, giving rise to significant changes of global conditions within short time.


2013 ◽  
Vol 22 (2) ◽  
pp. 148 ◽  
Author(s):  
Gary L. Achtemeier

A cellular automata fire model represents ‘elements’ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for ‘super-diffusive’ fire spread and coupled surface-layer (2-m) fire–atmosphere processes. Pressure anomalies, which are integrals of the thermal properties of the overlying heated plume, drive the surface winds around and through the fire. Five simulations with differing fuel and wind conditions were compared with fire and meteorological data from an experimental grassfire (FireFlux). The fire model accurately simulated bulk patterns of measured time-series of 2-m winds at two towers and observed fire behaviour (spread rate, flaming depth and heat released). Fidelity to spatial windfields in the vicinity of the fire was similar to results from full-physics fire models for other grassfires. Accurate predictions of fire spread depend critically on accurate wind speeds and directions at the location of the fire. Simulated fire–atmosphere coupling using FireFlux data increased wind speeds across the fire line by up to a factor of three. With its computational speed relative to full-physics models, the fire model can inform full-physics modellers regarding problems of interest. Although the fire model is tested for homogeneous fuels on flat terrain, the model is designed for simulating complex distributions of fire within heterogeneous distributions of fuels over complex landscapes.


Sign in / Sign up

Export Citation Format

Share Document