fuel moisture content
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 65)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 13 (21) ◽  
pp. 4224
Author(s):  
Eleni Dragozi ◽  
Theodore M. Giannaros ◽  
Vasiliki Kotroni ◽  
Konstantinos Lagouvardos ◽  
Ioannis Koletsis

The frequent occurrence of large and high-intensity wildfires in the Mediterranean region poses a major threat to people and the environment. In this context, the estimation of dead fine fuel moisture content (DFMC) has become an integrated part of wildfire management since it provides valuable information for the flammability status of the vegetation. This study investigates the effectiveness of a physically based fuel moisture model in estimating DFMC during severe fire events in Greece. Our analysis considers two approaches, the satellite-based (MODIS DFMC model) and the weather station-based (AWSs DFMC model) approach, using a fuel moisture model which is based on the relationship between the fuel moisture of the fine fuels and the water vapor pressure deficit (D). During the analysis we used weather station data and MODIS satellite data from fourteen wildfires in Greece. Due to the lack of field measurements, the models’ performance was assessed only in the case of the satellite data by using weather observations obtained from the network of automated weather stations operated by the National Observatory of Athens (NOA). Results show that, in general, the satellite-based model achieved satisfactory accuracy in estimating the spatial distribution of the DFMC during the examined fire events. More specifically, the validation of the satellite-derived DFMC against the weather-station based DFMC indicated that, in all cases examined, the MODIS DFMC model tended to underestimate DFMC, with MBE ranging from −0.3% to −7.3%. Moreover, in all of the cases examined, apart from one (Sartis’ fire case, MAE: 8.2%), the MAE of the MODIS DFMC model was less than 2.2%. The remaining numerical results align with the existing literature, except for the MAE case of 8.2%. The good performance of the satellite based DFMC model indicates that the estimation of DFMC is feasible at various spatial scales in Greece. Presently, the main drawback of this approach is the occurrence of data gaps in the MODIS satellite imagery. The examination and comparison of the two approaches, regarding their operational use, indicates that the weather station-based approach meets the requirements for operational DFMC mapping to a higher degree compared to the satellite-based approach.


2021 ◽  
Vol 13 (18) ◽  
pp. 3726
Author(s):  
José M. Costa-Saura ◽  
Ángel Balaguer-Beser ◽  
Luis A. Ruiz ◽  
Josep E. Pardo-Pascual ◽  
José L. Soriano-Sancho

Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this paper, an empirical model based on multivariate linear regression was constructed for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used to obtain a spatial representation of this type of forest cover in that area. A prediction model was created by combining spectral indices and meteorological variables. This study demonstrates that the Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological variables (mean surface temperature and mean wind speed) are a promising combination to derive cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all sites improved after using an additive site-specific index based on satellite information, reaching a R2adj = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by the canopy cover fraction of each species of all shrub species present in each sampling plot.


2021 ◽  
Vol 496 ◽  
pp. 119379
Author(s):  
Ekaterina Rakhmatulina ◽  
Scott Stephens ◽  
Sally Thompson

Author(s):  
Xingwen Quan ◽  
Marta Yebra ◽  
David Riaño ◽  
Binbin He ◽  
Gengke Lai ◽  
...  

2021 ◽  
Vol 179 ◽  
pp. 81-91
Author(s):  
Liujun Zhu ◽  
Geoffrey I. Webb ◽  
Marta Yebra ◽  
Gianluca Scortechini ◽  
Lynn Miller ◽  
...  

Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 45
Author(s):  
Sonisa Sharma ◽  
Kundan Dhakal

With increasing forest and grassland wildfire trends strongly correlated to anthropogenic climate change, assessing wildfire danger is vital to reduce catastrophic human, economic, and environmental loss. From this viewpoint, the authors discuss various approaches deployed to evaluate wildfire danger, from in-situ observations to satellite-based fire prediction systems. Lately, the merit of soil moisture in predicting fuel moisture content and the likelihood of wildfire occurrence has been widely realized. Harmonized soil moisture measurement initiatives via state-of-the-art soil moisture networks have facilitated the use of soil moisture information in developing innovative applications for wildfire prediction and risk management applications. Additionally, the increasing availability of remote-sensing data has enabled the monitoring and modeling of wildfires across various terrestrial ecosystems. When coupled with remotely sensed data, field-based soil moisture measurements have been more valuable predictors of assessing wildfire than alone. However, sensors capable of acquiring higher spectral information and radiometry across large spatiotemporal domains are still lacking. The automation aspect of such extensive data from remote-sensing and field data is needed to rapidly assess wildfire and mitigation of wildfire-related damage at operational scales.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 933
Author(s):  
Chunquan Fan ◽  
Binbin He

Dead fuel moisture content (DFMC) is a key driver for fire occurrence and is often an important input to many fire simulation models. There are two main approaches to estimating DFMC: empirical and process-based models. The former mainly relies on empirical methods to build relationships between the input drivers (weather, fuel and site characteristics) and observed DFMC. The latter attempts to simulate the processes that occur in the fuel with energy and water balance conservation equations. However, empirical models lack explanations for physical processes, and process-based models may provide an incomplete representation of DFMC. To combine the benefits of empirical and process-based models, here we introduced the Long Short-Term Memory (LSTM) network and its combination with an effective physics process-based model fuel stick moisture model (FSMM) to estimate DFMC. The LSTM network showed its powerful ability in describing the temporal dynamic changes of DFMC with high R2 (0.91), low RMSE (3.24%) and MAE (1.97%). When combined with a FSMM model, the physics-guided model FSMM-LSTM showed betterperformance (R2 = 0.96, RMSE = 2.21% and MAE = 1.41%) compared with the other models. Therefore, the combination of the physics process and deep learning estimated 10-h DFMC more accurately, allowing the improvement of wildfire risk assessments and fire simulating.


Sign in / Sign up

Export Citation Format

Share Document